skip to main content

Enhancing bio-char calorific value through catalytic pyrolysis: The role of magnesium oxide-zeolite based catalysts

1Faculty of Integrated Technologies, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE, 1410, Brunei Darussalam

2School of Business, Presidency University, House no. 11/A, Road no. 92, Gulshan 2, Dhaka-1212, Bangladesh

3Research Center for Chemistry, National Research and Innovation Agency (BRIN), Gd. 452 Kawasan Sains dan Teknologi (KST) B.J Habibie Serpong, South Tangerang, Banten, Indonesia

Received: 19 Mar 2025; Revised: 16 Sep 2025; Accepted: 30 Oct 2025; Available online: 24 Nov 2025; Published: 1 Jan 2026.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2026 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

The current research aims to improve the generation of bio-char with elevated higher heating values (HHVs) by utilizing magnesium oxide-zeolite-based catalysts across various temperature conditions. The exploration of biomass catalytic pyrolysis has intensified in the pursuit of sustainable energy solutions. Catalytic pyrolysis offers a technique to convert abundant and renewable biomass resources into valuable biofuels and bio-char, thereby improving energy security and reducing dependence on fossil fuels. The use of suitable catalysts in biomass catalytic pyrolysis is crucial for enhancing the yield of bio-char with higher calorific value. This investigation explores the impact of magnesium oxide-zeolite-based catalysts on the higher heating values of bio-char generated from coconut shells. The initial findings indicate a notable enhancement in the calorific value of bio-char. The HHV increased from 12.03 MJ/kg for untreated coconut shells to 20.06 MJ/kg with ZSM-5, ultimately reaching an impressive 38.11 MJ/kg with the MgO/ZSM-5 catalyst. The results demonstrate that the addition of magnesium oxide significantly improves the energy content of bio-char. Various combinations of magnesium oxide, such as MgO/ZSM-5, MgO/Y2O3/ZSM-5, and MgO/Mn3O4/ZSM-5, are evaluated for their effects on the pyrolysis process. The results demonstrate that the impregnation of metal oxides into zeolite catalysts enhances catalytic performance and facilitates the efficient conversion of coconut shells into high-energy bio-char. The findings highlight the promise of metal oxide-zeolite catalysts in improving bio-char quality and promoting the development of sustainable energy technologies.

Fulltext View|Download
Keywords: Pyrolysis; biomass; low-cost catalyts; Magnesium Oxide-Zeolite Based Catalysts; Bio-char

Article Metrics:

  1. Abdullah, H., Mediaswanti, K. A., & Wu, H. (2010). Biochar as a fuel: 2. Significant differences in fuel quality and ash properties of biochars from various biomass components of mallee trees. Energy and Fuels, 24(3), 1972–1979. https://doi.org/10.1021/ef901435f
  2. Afshar, M., & Mofatteh, S. (2024). Biochar for a sustainable future: Environmentally friendly production and diverse applications. Results in Engineering, 23, 102433. https://doi.org/10.1016/j.rineng.2024.102433
  3. Akhtar, J., & Saidina Amin, N. (2012). A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renewable and Sustainable Energy Reviews, 16(7), 5101–5109. https://doi.org/10.1016/j.rser.2012.05.033
  4. Anand, A., Gautam, S., & Ram, L. C. (2023). Feedstock and pyrolysis conditions affect suitability of biochar for various sustainable energy and environmental applications. Journal of Analytical and Applied Pyrolysis, 170, 105881. https://doi.org/10.1016/j.jaap.2023.105881
  5. ASTM International. (2017). Standard Test Method for Gross Calorific and Ash Value of Waste Materials. 11.04, 1–8. https://doi.org/10.1520/D5468-02
  6. Beljin, J., Đukanović, N., Anojčić, J., Simetić, T., Apostolović, T., Mutić, S., & Maletić, S. (2025). Biochar in the Remediation of Organic Pollutants in Water: A Review of Polycyclic Aromatic Hydrocarbon and Pesticide Removal. Nanomaterials, 15(1), Article 1. https://doi.org/10.3390/nano15010026
  7. Bhagat, D., More, Y., [b, M., Ingle, R., Bembalkar, S., & Pawar, R. (2017). Yttrium oxide (Y2O3): Efficient and green catalysis for the synthesis of chromeno[2,3-b]quinolinedione. Journal of Medicinal Chemistry and Drug Discovery. 3(2), 646-653. https://gifsa.ac.in/2017/12/17/yttrium-oxide-y2o3-efficient-and-green-catalysis-for-the-synthesis-of-chromeno-23-bquinolinedione/
  8. Bianasari, A. A., Khaled, M. S., Hoang, T.-D., Reza, M. S., Bakar, M. S. A., & Azad, A. K. (2024). Influence of combined catalysts on the catalytic pyrolysis process of biomass: A systematic literature review. Energy Conversion and Management, 309, 118437. https://doi.org/10.1016/j.enconman.2024.118437
  9. Bu, Q., Cao, M., Wang, M., Zhang, X., & Mao, H. (2021). The effect of torrefaction and ZSM-5 catalyst for hydrocarbon rich bio-oil production from co-pyrolysis of cellulose and low density polyethylene via microwave-assisted heating. Science of The Total Environment, 754, 142174. https://doi.org/10.1016/j.scitotenv.2020.142174
  10. Chellappan, S., Nair, V., V., S., & K., A. (2018). Synthesis, optimization and characterization of biochar based catalyst from sawdust for simultaneous esterification and transesterification. Chinese Journal of Chemical Engineering, 26(12), 2654–2663. https://doi.org/10.1016/j.cjche.2018.02.034
  11. Chen, N., Hu, D., Wang, Y., Tan, L., Zhang, F., & Feng, H. (2019). One-pot synthesis of P-toluidine-reduced graphene oxide/Mn3O4 composite and its electrochemical performance. Journal of Solid State Electrochemistry, 23. https://doi.org/10.1007/s10008-019-04206-8
  12. Cho, G. Y., Lee, Y. H., Yu, W., An, J., & Cha, S. W. (2019). Optimization of Y2O3 dopant concentration of yttria stabilized zirconia thin film electrolyte prepared by plasma enhanced atomic layer deposition for high performance thin film solid oxide fuel cells. Energy, 173, 436–442. https://doi.org/10.1016/j.energy.2019.01.124
  13. Chueaphetr, R., Suwannaruang, T., Khunphonoi, R., Khemthong, P., & Wantala, K. (2023). Enhancing deoxygenation of waste cooking palm oil over CaO-MgO catalyst modified by K2O for green bio-fuel. Fuel, 354, 129350. https://doi.org/10.1016/j.fuel.2023.129350
  14. Chung, D. d. l. (2022). Performance of Thermal Interface Materials. Small, 18(16), 2200693. https://doi.org/10.1002/smll.202200693
  15. de Boer, R. M., van Huis, M. A., & Mendes, R. G. (2024). Reversible MnO to Mn3O4 Oxidation in Manganese Oxide Nanoparticles. Small, 20(9), 2304925. https://doi.org/10.1002/smll.202304925
  16. De Luca, A., Kenel, C., Pado, J., Joglekar, S. S., Dunand, D. C., & Leinenbach, C. (2021). Thermal stability and influence of Y2O3 dispersoids on the heat treatment response of an additively manufactured ODS Ni–Cr–Al–Ti γ/γ′ superalloy. Journal of Materials Research and Technology, 15, 2883–2898. https://doi.org/10.1016/j.jmrt.2021.09.076
  17. Demirbas, A. (2007). Effects of Moisture and Hydrogen Content on the Heating Value of Fuels. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. https://doi.org/10.1080/009083190957801
  18. Devi, P. (2014). Optimization of Pyrolysis Conditions to Synthesize Adsorbent from Paper Mill Sludge. Journal of Clean Energy Technologies, 2, 2014. https://doi.org/10.7763/JOCET.2014.V2.118
  19. Domingues, R. R., Trugilho, P. F., Silva, C. A., Melo, I. C. N. A. de, Melo, L. C. A., Magriotis, Z. M., & Sánchez-Monedero, M. A. (2017). Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. PloS One, 12(5), e0176884. https://doi.org/10.1371/journal.pone.0176884
  20. Dong, W., Ou, M., Qu, D., Shi, X., Guo, M., Liu, G., Wang, S., Wang, F., & Chen, Y. (2022). Rare-Earth Metal Yttrium-Modified Composite Metal Oxide Catalysts for High Selectivity Synthesis of Biomass-Derived Lactic Acid from Cellulose. ChemCatChem, 14(12), e202200265. https://doi.org/10.1002/cctc.202200265
  21. Egbosiuba, T. C. (2022). Biochar and bio-oil fuel properties from nickel nanoparticles assisted pyrolysis of cassava peel. Heliyon, 8(8), e10114. https://doi.org/10.1016/j.heliyon.2022.e10114
  22. Elangovan, S., Elliott, D. C., Santosa, D., Spatari, S., & Karanjikar, M. (2018). Novel Electro-Deoxygenation Process for Bio-oil Upgrading (No. DOE-OxEon-6288). OxEon Energy, LLC, Clearfield, UT (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); National Renewable Energy Lab. (NREL), Golden, CO (United States). https://doi.org/10.2172/1458768
  23. Elangovan, S., Larsen, D., Bay, I., Mitchell, E., Hartvigsen, J., Millett, B., Elwell, J., Santosa, D., & Elliott, D. C. (2017). Electrochemical Upgrading of Bio-Oil. ECS Transactions, 78(1), 3149. https://doi.org/10.1149/07801.3149ecst
  24. Elbasiouny, H., Elbehiry, F., El-Ramady, H., & Hasanuzzaman, M. (2021). Contradictory Results of Soil Greenhouse Gas Emissions as Affected by Biochar Application: Special Focus on Alkaline Soils. International Journal of Environmental Research, 15, 903–920. https://doi.org/10.1007/s41742-021-00358-6
  25. Fernández, J. M., Nieto, M. A., López-de-Sá, E. G., Gascó, G., Méndez, A., & Plaza, C. (2014). Carbon dioxide emissions from semi-arid soils amended with biochar alone or combined with mineral and organic fertilizers. Science of The Total Environment, 482–483, 1–7. https://doi.org/10.1016/j.scitotenv.2014.02.103
  26. Fogler, H. S. (2016). Elements of chemical reaction engineering (Fifth edition). Prentice Hall
  27. Gagrani, A., Ding, B., Wang, Y., & Tsuzuki, T. (2019). pH dependent catalytic redox properties of Mn3O4 nanoparticles. Materials Chemistry and Physics, 231, 41–47. https://doi.org/10.1016/j.matchemphys.2019.04.017
  28. Gayathri, R., Gopinath, K. P., & Kumar, P. S. (2021). Adsorptive separation of toxic metals from aquatic environment using agro waste biochar: Application in electroplating industrial wastewater. Chemosphere, 262. Scopus. https://doi.org/10.1016/j.chemosphere.2020.128031
  29. Gezae, A., & Chandraratne, M. (2018). Biochar Production From Biomass Waste-Derived Material. https://doi.org/10.1016/B978-0-12-803581-8.11249-4
  30. Ghazimoradi, M., Soltanali, S., Karami, H., Ghassabzadeh, H., & Bakhtiari, J. (2023). A facile strategy to prepare ZSM-5-based composites with enhanced light olefin selectivity and stability in the HTO process. RSC Advances, 13(29), 20058–20067. https://doi.org/10.1039/D3RA03680D
  31. Guedes, R. E., Luna, A. S., & Torres, A. R. (2018). Operating parameters for bio-oil production in biomass pyrolysis: A review. Journal of Analytical and Applied Pyrolysis, 129, 134–149. https://doi.org/10.1016/j.jaap.2017.11.019
  32. Guo, Z., Sun, T., Cao, J., Liu, X., Xue, J., Li, X., Liang, Y., & Lin, J. (2022). Microstructure and mechanical properties of Al matrix composite reinforced with micro/nano-sized yttrium oxyfluoride. Materials Science and Engineering: A, 854, 143820. https://doi.org/10.1016/j.msea.2022.143820
  33. Gupta, O. P. (2018). Elements of Fuel & Combustion Technology. Khanna Publishing House
  34. Harris, D. C., Cambrea, L. R., Johnson, L. F., Seaver, R. T., Baronowski, M., Gentilman, R., Scott Nordahl, C., Gattuso, T., Silberstein, S., Rogan, P., Hartnett, T., Zelinski, B., Sunne, W., Fest, E., Howard Poisl, W., Willingham, C. B., Turri, G., Warren, C., Bass, M., … Goodrich, S. M. (2013). Properties of an Infrared-Transparent MgO:Y2O3 Nanocomposite. Journal of the American Ceramic Society, 96(12), 3828–3835. https://doi.org/10.1111/jace.12589
  35. Hata, D., Aihara, T., Miura, H., & Shishido, T. (2021). Lactic Acid Production from Glucose over Y2O3-based Catalysts under Base-free Conditions. Journal of the Japan Petroleum Institute, 64(5), 280–292. https://doi.org/10.1627/jpi.64.280
  36. Hemavathy, R. V., Kumar, P. S., Kanmani, K., & Jahnavi, N. (2020). Adsorptive separation of Cu(II) ions from aqueous medium using thermally/chemically treated Cassia fistula based biochar. Journal of Cleaner Production, 249. Scopus. https://doi.org/10.1016/j.jclepro.2019.119390
  37. Hendrix, Y. S., Nimas, M. S. S., & Yusron, S. (2024). Characterisation of biochar from various carbon sources. BIO Web of Conferences
  38. Hu, Z., & Wei, L. (2023). Review on Characterization of Biochar Derived from Biomass Pyrolysis via Reactive Molecular Dynamics Simulations. Journal of Composites Science, 7(9), Article 9. https://doi.org/10.3390/jcs7090354
  39. Huang, Y., Wei, L., Crandall, Z., Julson, J., & Gu, Z. (2015). Combining Mo-Cu/HZSM-5 with a two-stage catalytic pyrolysis system for pine sawdust thermal conversion. Fuel, 150, 656–663. https://doi.org/10.1016/j.fuel.2015.02.071
  40. Hubble, A., Childs, B., Pecchi, M., Sudibyo, H., Tester, J., & Goldfarb, J. (2023). Role of in situ (in contact with biomass) and ex situ (in contact with pyrolysis vapors) transition metal catalysts on pyrolysis of cherry pits. Fuel, 352, 129062. https://doi.org/10.1016/j.fuel.2023.129062
  41. Hussein, G. A. M., & Gates, B. C. (1998). Surface and Catalytic Properties of Yttrium Oxide: Evidence from Infrared Spectroscopy. Journal of Catalysis, 176(2), 395–404. https://doi.org/10.1006/jcat.1998.2067
  42. Hyun, J.-Y., Kim, K.-H., Kim, J.-P., Im, W.-B., Linganna, K., & Choi, J.-H. (2021). Enhancement of Luminescence Efficiency of Y2O3 Nanophosphor via Core/Shell Structure. Nanomaterials, 11(6), 1563. https://doi.org/10.3390/nano11061563
  43. Irfan, M., Chen, Q., Yue, Y., Pang, R., Lin, Q., Zhao, X., & Chen, H. (2016). Co-production of biochar, bio-oil and syngas from halophyte grass (Achnatherum splendens L.) under three different pyrolysis temperatures. Bioresource Technology, 211, 457–463. https://doi.org/10.1016/j.biortech.2016.03.077
  44. Isahak, W. N. R. W., Hisham, M. W. M., Yarmo, M. A., & Yun Hin, T. (2012). A review on bio-oil production from biomass by using pyrolysis method. Renewable and Sustainable Energy Reviews, 16(8), 5910–5923. https://doi.org/10.1016/j.rser.2012.05.039
  45. Jafri, N., Wong, W. Y., Doshi, V., Yoon, L. W., & Cheah, K. H. (2018). A review on production and characterization of biochars for application in direct carbon fuel cells. Process Safety and Environmental Protection, 118, 152–166. https://doi.org/10.1016/j.psep.2018.06.036
  46. Ji, X., Liu, B., Ma, W., Chen, G., Yan, B., & Cheng, Z. (2017). Effect of MgO promoter on Ni-Mg/ZSM-5 catalysts for catalytic pyrolysis of lipid-extracted residue of Tribonema minus. Journal of Analytical and Applied Pyrolysis, 123, 278–283. https://doi.org/10.1016/j.jaap.2016.10.032
  47. Kaczmarczyk, J., Zasada, F., Janas, J., Indyka, P., Piskorz, W., Kotarba, A., & Sojka, Z. (2016). Thermodynamic Stability, Redox Properties, and Reactivity of Mn3O4, Fe3O4, and Co3O4 Model Catalysts for N2O Decomposition: Resolving the Origins of Steady Turnover. ACS Catalysis, 6(2), 1235–1246. https://doi.org/10.1021/acscatal.5b02642
  48. Karim, T. M., Toyoda, H., Sawada, M., Zhao, L., Wang, Y., Xiao, P., Wang, L., Huang, J., & Yokoi, T. (2024). Aluminum Distribution on the Microporous and Hierarchical ZSM-5 Intracrystalline and Its Impact on the Catalytic Performance. Chem & Bio Engineering, 1(9), 805–816. https://doi.org/10.1021/cbe.4c00117
  49. Kim, K. J., Park, M.-S., Kim, J.-H., Hwang, U., Lee, N. J., Jeong, G., & Kim, Y.-J. (2012). Novel catalytic effects of Mn3O4 for all vanadium redox flow batteries. Chemical Communications, 48(44), 5455–5457. https://doi.org/10.1039/C2CC31433A
  50. Kloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., Schwanninger, M., Gerzabek, M. H., & Soja, G. (2012). Characterization of Slow Pyrolysis Biochars: Effects of Feedstocks and Pyrolysis Temperature on Biochar Properties. Journal of Environmental Quality, 41(4), 990–1000. https://doi.org/10.2134/jeq2011.0070
  51. Kohutiar, M., Kakošová, L., Krbata, M., Janík, R., Fekiač, J. J., Breznická, A., Eckert, M., Mikuš, P., & Timárová, Ľ. (2025). Comprehensive Review: Technological Approaches, Properties, and Applications of Pure and Reinforced Polyamide 6 (PA6) and Polyamide 12 (PA12) Composite Materials. Polymers, 17(4), Article 4. https://doi.org/10.3390/polym17040442
  52. Krsmanović Whiffen, R., Anti’c, Bartova, B., Brik, M., & Dramicanin, M. (2012). Fabrication of polycrystalline (Y< sub> 0.7 Gd< sub> 0.3)< sub> 2 O< sub> 3: Eu< sup> 3+ ceramics: The influence of initial pressure and sintering temperature on its morphology and photoluminescence activity. Ceramics International, 38, 1303–1313
  53. Kwapinski, W., Byrne, C. M. P., Kryachko, E., Wolfram, P., Adley, C., Leahy, J. J., Novotny, E. H., & Hayes, M. H. B. (2010). Biochar from biomass and waste. Waste and Biomass Valorization, 1(2), 177–189. Scopus. https://doi.org/10.1007/s12649-010-9024-8
  54. Lachos-Perez, D., Martins-Vieira, J. C., Missau, J., Anshu, K., Siakpebru, O. K., Thengane, S. K., Morais, A. R. C., Tanabe, E. H., & Bertuol, D. A. (2023). Review on Biomass Pyrolysis with a Focus on Bio-Oil Upgrading Techniques. Analytica, 4(2), Article 2. https://doi.org/10.3390/analytica4020015
  55. Lee, Y., Park, J., Ryu, C., Gang, K. S., Yang, W., Park, Y.-K., Jung, J., & Hyun, S. (2013). Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 °C. Bioresource Technology, 148, 196–201. https://doi.org/10.1016/j.biortech.2013.08.135
  56. Lee, Y., Ryu, J., Han, J.-H., & Jung, I.-C. (2025). New thermally conductive MgO particles prepared using MgTiO3-La2O3-V2O5 additives and fabrication of gap filler with the particles. Ceramics International, 51(11), 14268–14277. https://doi.org/10.1016/j.ceramint.2025.01.263
  57. Lehmann, J., & Joseph, S. (2009). Biochar for environmental management: An introduction. Biochar for environmental management. Science and technology. Earthscan Publishers Ltd
  58. Lehmann, J., & Joseph, S. (2015). Biochar for environmental management: An introduction. In Biochar for Environmental Management (2nd ed.). Routledge
  59. Li, J. F., Xia, C., Au, C. T., & Liu, B. S. (2014). Y2O3-promoted NiO/SBA-15 catalysts highly active for CO2/CH4 reforming. International Journal of Hydrogen Energy, 39(21), 10927–10940. https://doi.org/10.1016/j.ijhydene.2014.05.021
  60. Li, W., Xu, A., Zhang, Y., Yu, Y., Liu, Z., & Qin, Y. (2022). Metal-organic framework-derived Mn3O4 nanostructure on reduced graphene oxide as high-performance supercapacitor electrodes. Journal of Alloys and Compounds, 897, 162640. https://doi.org/10.1016/j.jallcom.2021.162640
  61. Li, X., Zhou, L., Gao, J., Miao, H., Zhang, H., & Xu, J. (2009). Synthesis of Mn3O4 nanoparticles and their catalytic applications in hydrocarbon oxidation. Powder Technology, 190(3), 324–326. https://doi.org/10.1016/j.powtec.2008.08.010
  62. Lin, Y.-F., Chen, J.-H., Hsu, S.-H., & Chung, T.-W. (2013). Hydrothermal synthesis of Lewis acid Y2O3 cubes and flowers for the removal of phospholipids from soybean oil. CrystEngComm, 15(33), 6506–6510. https://doi.org/10.1039/C3CE40791H
  63. Majedi, F., Wijayanti, W., & Hamidi, N. (2016). PERUBAHAN MASSA DAN NILAI KALOR CHAR DENGAN VARIASI HEATING RATE DAN TEMPERATUR PADA PIROLISIS SERBUK KAYU MAHONI (SWITENIA MACROPHYLLA). ROTOR, 9(2), 59–64
  64. Martínez, J. D., Veses, A., Mastral, A. M., Murillo, R., Navarro, M. V., Puy, N., Artigues, A., Bartrolí, J., & García, T. (2014). Co-pyrolysis of biomass with waste tyres: Upgrading of liquid bio-fuel. Fuel Processing Technology, 119, 263–271. Scopus. https://doi.org/10.1016/j.fuproc.2013.11.015
  65. Merckel, R. D., Labuschagne, F. J. W. J., & Heydenrych, M. D. (2019). Oxygen consumption as the definitive factor in predicting heat of combustion. Applied Energy, 235, 1041–1047. https://doi.org/10.1016/j.apenergy.2018.10.111
  66. Mohanty, S. K., Valenca, R., Berger, A. W., Yu, I. K. M., Xiong, X., Saunders, T. M., & Tsang, D. C. W. (2018). Plenty of room for carbon on the ground: Potential applications of biochar for stormwater treatment. Science of the Total Environment, 625, 1644–1658. Scopus. https://doi.org/10.1016/j.scitotenv.2018.01.037
  67. Mujtaba, M., Fernandes Fraceto, L., Fazeli, M., Mukherjee, S., Savassa, S. M., Araujo de Medeiros, G., do Espírito Santo Pereira, A., Mancini, S. D., Lipponen, J., & Vilaplana, F. (2023). Lignocellulosic biomass from agricultural waste to the circular economy: A review with focus on biofuels, biocomposites and bioplastics. Journal of Cleaner Production, 402, 136815. https://doi.org/10.1016/j.jclepro.2023.136815
  68. Murmu, U. K., Adhikari, J., Naskar, A., Dey, D., Roy, A., Ghosh, A., & Ghosh, M. (2022). Mechanical Properties of Crystalline and Semicrystalline Polymer Systems. In M. S. J. Hashmi (Ed.), Encyclopedia of Materials: Plastics and Polymers (pp. 917–927). Elsevier. https://doi.org/10.1016/B978-0-12-820352-1.00248-0
  69. Narasimharao, K., & Al-Sultan, F. S. (2020). Y2O3 modified Au-La2O3 nanorod catalysts for oxidative cracking of n-propane. Fuel, 280, 118599. https://doi.org/10.1016/j.fuel.2020.118599
  70. Oladosu, K., Olawore, A., Alade, A., & Kolawole, M. (2022). Optimization of hhv and energy yield from torrefaction of Albizia zygia wood- calcium hydrogen phosphate catalyst blends using optimal combined design. Acta Periodica Technologica, 2022, 109–122. https://doi.org/10.2298/APT2253109O
  71. Pawelczyk, E., Wysocka, I., & Gębicki, J. (2022). Pyrolysis Combined with the Dry Reforming of Waste Plastics as a Potential Method for Resource Recovery—A Review of Process Parameters and Catalysts. Catalysts, 12(4), Article 4. https://doi.org/10.3390/catal12040362
  72. Pei, L.-Z., Yin, W.-Y., Wang, J.-F., Chen, J., Fan, C.-G., & Zhang, Q.-F. (2010). Low temperature synthesis of magnesium oxide and spinel powders by a sol-gel process. Materials Research, 13, 339–343. https://doi.org/10.1590/S1516-14392010000300010
  73. Pelucchi, M., Arunthanayothin, S., Song, Y., Herbinet, O., Stagni, A., Carstensen, H.-H., Faravelli, T., & Battin-Leclerc, F. (2021). Pyrolysis and Combustion Chemistry of Pyrrole, a Reference Component for Bio-oil Surrogates: Jet-Stirred Reactor Experiments and Kinetic Modeling. Energy & Fuels, 35(9), Article 9. https://doi.org/10.1021/acs.energyfuels.0c03874
  74. Pham, X. P. (2014). Influences of molecular profiles of biodiesels on atomization, combustion and emission characteristics. PhD Thesis, Sydney University, http://hdl.handle.net/2123/12812
  75. Pike, J., Hanson, J., Zhang, L., & Chan, S.-W. (2007). Synthesis and Redox Behavior of Nanocrystalline Hausmannite (Mn3O4). Chemistry of Materials, 19(23), 5609–5616. https://doi.org/10.1021/cm071704b
  76. Preeti, Ag, M., Yp, K., Kg, D., & Pa, S. (2024). Physico-chemical characterization of coconut shell (Cocos nucifera). International Journal of Advanced Biochemistry Research, 8(3S), 118–122. https://doi.org/10.33545/26174693.2024.v8.i3Sb.703
  77. Pütün, E. (2010). Catalytic pyrolysis of biomass: Effects of pyrolysis temperature, sweeping gas flow rate and MgO catalyst. Energy, 35(7), 2761–2766. https://doi.org/10.1016/j.energy.2010.02.024
  78. Qu, S., Chen, C., Guo, M., Lu, J., Yi, W., Ding, J., & Miao, Z. (2020). Synthesis of MgO/ZSM-5 catalyst and optimization of process parameters for clean production of biodiesel from Spirulina platensis. Journal of Cleaner Production, 276, 123382. https://doi.org/10.1016/j.jclepro.2020.123382
  79. Qurat-ul-Ain, Shafiq, M., Capareda, S. C., & Firdaus-e-Bareen. (2021). Effect of different temperatures on the properties of pyrolysis products of Parthenium hysterophorus. Journal of Saudi Chemical Society, 25(3), 101197. https://doi.org/10.1016/j.jscs.2021.101197
  80. Rahim, M., Trisasongko, A., Ab-Wahid, M., Mohd Jaafar, M. N., Othman, N., Said, M., & Sarif, M. (2023). UTILIZATION OF SYNTHESIS GAS GENERATED FROM AGRICULTURAL WASTE AS CLEAN SUSTAINABLE FUEL. ASEAN Engineering Journal, 13, 159–164. https://doi.org/10.11113/aej.v13.19218
  81. Rashid, M., Hussain, Q., Khan, K. S., Al-Wabel, M. I., Afeng, Z., Akmal, M., Ijaz, S. S., Aziz, R., Shah, G. A., Mehdi, S. M., Alvi, S., & Qayyum, M. F. (2020). Prospects of Biochar in Alkaline Soils to Mitigate Climate Change. In S. Fahad, M. Hasanuzzaman, M. Alam, H. Ullah, M. Saeed, I. Ali Khan, & M. Adnan (Eds.), Environment, Climate, Plant and Vegetation Growth (pp. 133–149). Springer International Publishing. https://doi.org/10.1007/978-3-030-49732-3_7
  82. Rawat, N., Junkar, I., Iglič, A., Kralj-Iglič, V., Kulkarni-Sambhare, M., Gongadze, E., & Benčina, M. (2023). Interaction of cells with different types of TiO2 nanostructured surfaces. In A. Iglič︎, M. Rappolt, & P. Losada Perez (Eds.), Advances in Biomembranes and Lipid Self-Assembly (Vol. 37, pp. 29–59). Academic Press. https://doi.org/10.1016/bs.abl.2023.05.002
  83. Reza, M. S., Taweekun, J., Afroze, S., Siddique, S. A., Islam, Md. S., Wang, C., & Azad, A. K. (2023). Investigation of Thermochemical Properties and Pyrolysis of Barley Waste as a Source for Renewable Energy. Sustainability, 15(2). https://doi.org/10.3390/su15021643
  84. Risch, M., Stoerzinger, K. A., Han, B., Regier, T. Z., Peak, D., Sayed, S. Y., Wei, C., Xu, Z., & Shao-Horn, Y. (2017). Redox Processes of Manganese Oxide in Catalyzing Oxygen Evolution and Reduction: An in Situ Soft X-ray Absorption Spectroscopy Study. The Journal of Physical Chemistry C, 121(33), 17682–17692. https://doi.org/10.1021/acs.jpcc.7b05592
  85. Rueangsan, K., Kraisoda, P., Heman, A., Tasarod, H., Wangkulangkool, M., Trisupakitti, S., & Morris, J. (2021). Bio-oil and char obtained from cassava rhizomes with soil conditioners by fast pyrolysis. Heliyon, 7(11), e08291. https://doi.org/10.1016/j.heliyon.2021.e08291
  86. Santamaria, L., Artetxe, M., Lopez, G., Cortazar, M., Amutio, M., Bilbao, J., & Olazar, M. (2020). Effect of CeO2 and MgO promoters on the performance of a Ni/Al2O3 catalyst in the steam reforming of biomass pyrolysis volatiles. Fuel Processing Technology, 198, 106223. https://doi.org/10.1016/j.fuproc.2019.106223
  87. Serhal, C. A., Mallard, I., Poupin, C., Labaki, M., Siffert, S., & Cousin, R. (2018). Ultraquick synthesis of hydrotalcite-like compounds as efficient catalysts for the oxidation of volatile organic compounds. Comptes Rendus. Chimie, 21(11), 993–1000. https://doi.org/10.1016/j.crci.2018.09.012
  88. Shahed, K. S., Fainor, M., Gullbrand, S. E., Hast, M. W., & Manogharan, G. (2024). Hybrid additive manufacturing for Zn-Mg casting for biomedical application. In Vitro Models, 3(4), 157–168. https://doi.org/10.1007/s44164-024-00077-0
  89. Shi, D., Fu, G., Omran, A., Haw, K.-G., Zhu, L., Ding, R., Lang, Q., Wang, S., Fang, Q., Qiu, S., Yang, X., & Valtchev, V. (2023). Acidic properties of Al-rich ZSM-5 crystallized in strongly acidic fluoride medium. Microporous and Mesoporous Materials, 358, 112332. https://doi.org/10.1016/j.micromeso.2022.112332
  90. Sieradzka, M., Kirczuk, C., Kalemba-Rec, I., Mlonka-Mędrala, A., & Magdziarz, A. (2022). Pyrolysis of Biomass Wastes into Carbon Materials. Energies, 15(5), Article 5. https://doi.org/10.3390/en15051941
  91. Singh, M., Dey, E. S., & Dicko, C. (2020). Manganese oxide functionalized silk fibers for enzyme mimic application. Reactive and Functional Polymers, 151, 104565. https://doi.org/10.1016/j.reactfunctpolym.2020.104565
  92. Smets, K., Roukaerts, A., Czech, J., Reggers, G., Schreurs, S., Carleer, R., & Yperman, J. (2013). Slow catalytic pyrolysis of rapeseed cake: Product yield and characterization of the pyrolysis liquid. Biomass and Bioenergy, 57, 180–190. https://doi.org/10.1016/j.biombioe.2013.07.001
  93. Socci, J., Saraeian, A., Stefanidis, S. D., Banks, S. W., Shanks, B. H., & Bridgwater, T. (2022). The role of catalyst acidity and shape selectivity on products from the catalytic fast pyrolysis of beech wood. Journal of Analytical and Applied Pyrolysis, 162, 104710. https://doi.org/10.1016/j.jaap.2019.104710
  94. Stefanidis, S. D., Kalogiannis, K. G., Iliopoulou, E. F., Lappas, A. A., & Pilavachi, P. A. (2011). In-situ upgrading of biomass pyrolysis vapors: Catalyst screening on a fixed bed reactor. Bioresource Technology, 102(17), 8261–8267. https://doi.org/10.1016/j.biortech.2011.06.032
  95. Stefanidis, S. D., Karakoulia, S. A., Kalogiannis, K. G., Iliopoulou, E. F., Delimitis, A., Yiannoulakis, H., Zampetakis, T., Lappas, A. A., & Triantafyllidis, K. S. (2016). Natural magnesium oxide (MgO) catalysts: A cost-effective sustainable alternative to acid zeolites for the in situ upgrading of biomass fast pyrolysis oil. Applied Catalysis B: Environmental, 196, 155–173. https://doi.org/10.1016/j.apcatb.2016.05.031
  96. Terry, L. M., Li, C., Chew, J. J., Aqsha, A., How, B. S., Loy, A. C. M., Chin, B. L. F., Khaerudini, D. S., Hameed, N., Guan, G., & Sunarso, J. (2021). Bio-oil production from pyrolysis of oil palm biomass and the upgrading technologies: A review. Carbon Resources Conversion, 4, 239–250. https://doi.org/10.1016/j.crcon.2021.10.002
  97. Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology, 19(1), 191–215. https://doi.org/10.1007/s11157-020-09523-3
  98. Tripathi, M., Sahu, J. N., & Ganesan, P. (2016). Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renewable and Sustainable Energy Reviews, 55, 467–481. https://doi.org/10.1016/j.rser.2015.10.122
  99. Umerah, C. O., Kodali, D., Head, S., Jeelani, S., & Rangari, V. K. (2020). Synthesis of carbon from waste coconutshell and their application as filler in bioplast polymer filaments for 3D printing. Composites Part B: Engineering, 202, 108428. https://doi.org/10.1016/j.compositesb.2020.108428
  100. Verheijen, F., Jeffery, S., Bastos, A., Velde, M., & Diafas, I. (2010). Biochar Application to Soils – A Critical Scientific Review of Effects on Soil Properties, Processes and Functions. In Biochar Application to Soils: A Critical Scientific Review of Effects on Soil Properties, Processes and Functions. https://dx.doi.org/10.2788/472
  101. Vichaphund, S., Aht-ong, D., Sricharoenchaikul, V., & Atong, D. (2014). Catalytic upgrading pyrolysis vapors of Jatropha waste using metal promoted ZSM-5 catalysts: An analytical PY-GC/MS. Renewable Energy, 65, 70–77. https://doi.org/10.1016/j.renene.2013.07.016
  102. Vranic, E. (2004). AMORPHOUS PHARMACEUTICAL SOLIDS. Bosnian Journal of Basic Medical Sciences, 4(3), 35–39. https://doi.org/10.17305/bjbms.2004.3383
  103. Waheed, A., Xu, H., Qiao, X., Aili, A., Yiremaikebayi, Y., Haitao, D., & Muhammad, M. (2025). Biochar in sustainable agriculture and Climate Mitigation: Mechanisms, challenges, and applications in the circular bioeconomy. Biomass and Bioenergy, 193, 107531. https://doi.org/10.1016/j.biombioe.2024.107531
  104. Wang, K., Zhang, J., Shanks, B. H., & Brown, R. C. (2015). Catalytic conversion of carbohydrate-derived oxygenates over HZSM-5 in a tandem micro-reactor system. Green Chemistry, 17(1), 557–564. Scopus. https://doi.org/10.1039/c4gc01784f
  105. Wang, Y., Wang, L., Gan, N., Lim, Z.-Y., Wu, C., Peng, J., & Wang, W. G. (2014). Evaluation of Ni/Y2O3/Al2O3 catalysts for hydrogen production by autothermal reforming of methane. International Journal of Hydrogen Energy, 39(21), 10971–10979. https://doi.org/10.1016/j.ijhydene.2014.05.074
  106. Wardani, S., Pranoto, & Himawanto, D. A. (2018). Kinetic parameters and calorific value of biochar from mahogany (Swietenia macrophylla King) wood pyrolysis with heating rate and final temperature variations. AIP Conference Proceedings, 2049(1), 20034. https://doi.org/10.1063/1.5082439
  107. Wystalska, K., & Kwarciak-Kozłowska, A. (2021). The Effect of Biodegradable Waste Pyrolysis Temperatures on Selected Biochar Properties. Materials, 14(7), 1644. https://doi.org/10.3390/ma14071644
  108. Xiong, T., Lee, W. S. V., Huang, X., & Xue, J. (2017). Mn3O4/Reduced graphene oxide based supercapacitor with ultra-long cyclic performance. J. Mater. Chem. A, 5. https://doi.org/10.1039/C7TA03319B
  109. Xu, K., Ma, C., Yan, H., Gu, H., Wang, W.-W., Li, S.-Q., Meng, Q.-L., Shao, W.-P., Ding, G.-H., Wang, F. R., & Jia, C.-J. (2022). Catalytically efficient Ni-NiOx-Y2O3 interface for medium temperature water-gas shift reaction. Nature Communications, 13(1), 2443. https://doi.org/10.1038/s41467-022-30138-5
  110. Xu, L., & Yuan, J. (2015). Online identification of the lower heating value of the coal entering the furnace based on the boiler-side whole process models. Fuel, 161, 68–77. https://doi.org/10.1016/j.fuel.2015.08.009
  111. Yaashikaa, P. R., Kumar, P. S., Varjani, S., & Saravanan, A. (2020). A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnology Reports, 28, e00570. https://doi.org/10.1016/j.btre.2020.e00570
  112. Yadav, K., Jagadevan, S., Yadav, K., & Jagadevan, S. (2019). Influence of Process Parameters on Synthesis of Biochar by Pyrolysis of Biomass: An Alternative Source of Energy. In Recent Advances in Pyrolysis. IntechOpen
  113. Yi, F., Xu, D., Tao, Z., Hu, C., Bai, Y., Zhao, G., Chen, H., Cao, J.-P., & Yang, Y. (2022). Correlation of Brønsted acid sites and Al distribution in ZSM-5 zeolites and their effects on butenes conversion. Fuel, 320, 123729. https://doi.org/10.1016/j.fuel.2022.123729
  114. Yuan, D., Sang, Y., Xing, A., Wang, C., Miao, P., & Sun, Q. (2019). Tuning of Magnesium Distribution in ZSM-5 via Different Impregnation Methods and Its Effect on Methanol to Propene Reaction. Industrial & Engineering Chemistry Research, 58(13), 5112–5120. https://doi.org/10.1021/acs.iecr.8b04434
  115. Zhang, H., Chen, C., Gray, E. M., & Boyd, S. E. (2017). Effect of feedstock and pyrolysis temperature on properties of biochar governing end use efficacy. Biomass and Bioenergy, 105, 136–146. https://doi.org/10.1016/j.biombioe.2017.06.024
  116. Zhang, H., Cheng, Y.-T., Vispute, T. P., Xiao, R., & Huber, G. W. (2011). Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5: The hydrogen to carbon effective ratio. Energy and Environmental Science, 4(6), 2297–2307. Scopus. https://doi.org/10.1039/c1ee01230d
  117. Zhang, Y., Fu, P., Yi, W., Li, Z., Tian, C., Li, Z., Li, Y., & Wang, N. (2023). Transport hydrodynamics of catalytic particles in gradient cyclonic flow field and reaction characteristics to produce bio-oil. Advanced Powder Technology, 34(4), Article 4. Scopus. https://doi.org/10.1016/j.apt.2023.103980
  118. Zhao, Z., Zhao, J., & Yang, C. (2017). Efficient removal of ciprofloxacin by peroxymonosulfate/Mn3O4-MnO2 catalytic oxidation system. Chemical Engineering Journal, 327, 481-489. https://doi.org/10.1016/j.cej.2017.06.064
  119. Zheng, J., Zhu, X., Guo, Q., & Zhu, Q. (2006). Thermal conversion of rice husks and sawdust to liquid fuel. Waste Management, 26(12), 1430–1435. https://doi.org/10.1016/j.wasman.2005.10.011
  120. Zhou, H., Lin, W., Chen, C., Liu, C., Wu, J., Wang, J., & Fu, J. (2022). Anchoring Effect of Organosilanes on Hierarchical ZSM-5 Zeolite for Catalytic Fast Pyrolysis of Cellulose to Aromatics. ACS Omega, 7(18), Article 18. https://doi.org/10.1021/acsomega.2c00983

Last update:

No citation recorded.

Last update: 2025-11-23 16:59:20

No citation recorded.