skip to main content

Energy potential of biochar from slow pyrolysis of mixed tree leaves in a pilot-scale fixed-bed reactor

1School of Technology, Woxsen University, Kamkole, Sadasivpet, Sangareddy District, Hyderabad-500033, India

2Department of Mechanical Engineering, Faculty of Engineering and Technology, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria

3Energy Research and Technology Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, West Bengal, India

4 Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India

5 Department of Aeronautics and Astronautics, Faculty of Engineering and Technology, Kwara State University, Malete, Kwara State, Nigeria

6 Department of Mechanical Engineering, Colorado State University, Fort Colins, United States

7 Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle NE1 8ST, United Kingdom

8 Department of Mechanical Engineering Science, Faculty of Engineering and the Built Environment, University of Johannesburg, P. O. Box 524, Auckland Park 2006, South Africa

View all affiliations
Received: 21 Mar 2025; Revised: 25 Jun 2025; Accepted: 10 Jul 2025; Available online: 22 Jul 2025; Published: 1 Sep 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Thermochemical conversion processes, such as pyrolysis, offered significant potential for harnessing energy from biomass as a substitute for conventional fuels. This study investigated energy generation from mixed tree leaves through pyrolysis. The pyrolysis was conducted at 3 temperatures: 400, 500, and 600 °C. Characterization of the feedstock and pyrolysis products was carried out following international standards. The results showed that bio-oil yields (26.13–39.95%) and syngas yields (30.33–39.38%) increased with temperature, while the char yield decreased from 43.66-29.67%. The FC VM, AC, and MC of the biochars varied from 61.26-67.71, 4.58-12.75, 21.32-25.32, and 2.39-4.67%, respectively. After pyrolysis, the highest C (67.71%) was obtained at 600 °C, while the highest H (3.98%) was recorded at 400 °C. The study revealed that FC, AC, and C increased with temperature, whereas MC, VM, H, and O decreased. The produced biochars, particularly Char600, demonstrated HHV values (up to 23.32 MJ/kg), improved FC, and enhanced BET surface areas. While slightly lower than the HHV of traditional metallurgical coke, the biochars showed strong potential for partial substitution or co-injection in high-temperature metallurgical processes. The enhanced porosity and C contribute to their suitability as renewable solid fuels, supporting carbon footprint reduction in heavy industries.

Fulltext View|Download
Keywords: Biochar; Biomass energy; Slow pyrolysis; Fixed bed Reactor; Mixed tree leaves; Thermochemical conversion
Funding: CSIR, New Delhi, India

Article Metrics:

Article Info
Section: Original Research Article
Language : EN
  1. Abdullah, N., Mohd Taib, R., Mohamad Aziz, N. S., Omar, M. R., & Md Disa, N. (2023). Banana pseudo-stem biochar derived from slow and fast pyrolysis process. Heliyon, 9(1), e12940. https://doi.org/10.1016/j.heliyon.2023.e12940
  2. Adekunle, A. S., Ibitoye, S. E., Omoniyi, P. O., Jilantikiri, L. J., Yahaya, T., Mohammad, B. G., & Olusegun, H. D. (2019). Production and Testing of Biogas Using Cow Dung, Jatropha and Iron Filins. 4(3), 143–148. https://doi.org/10.12162/jbb.v4i3.002
  3. Adelawon, B. O., Latinwo, G. K., Eboibi, B. E., Agbede, O. O., Agarry, S. E., Latinwo, G. K., Eboibi, B. E., & Agbede, O. O. (2021). Comparison of the slow, fast, and flash pyrolysis of recycled maize-cob biomass waste, box-benhken process optimization and characterization studies for the thermal fast pyrolysis production of bio-energy. Chemical Engineering Communications, 0(0), 1–31. https://doi.org/10.1080/00986445.2021.1957851
  4. Adeniyi, A. G., Iwuozor, K. O., Adeleke, J., Emenike, E. C., Micheal, K. T., & Ighalo, J. O. (2023). Production and characterization of neem leaves biochar: Effect of two different retort carbonization systems. Bioresource Technology Reports, 24(June), 101597. https://doi.org/10.1016/j.biteb.2023.101597
  5. Adeniyi, A. G., Iwuozor, K. O., Emenike, E. C., Amoloye, M. A., Adeleke, J. A., Omonayin, E. O., Bamigbola, J. O., Ojo, H. T., & Ezzat, A. O. (2024). Leaf-based biochar: A review of thermochemical conversion techniques and properties. Journal of Analytical and Applied Pyrolysis, 177(January), 106352. https://doi.org/10.1016/j.jaap.2024.106352
  6. Ahmed, A., Abu Bakar, M. S., Hamdani, R., Park, Y. K., Lam, S. S., Sukri, R. S., Hussain, M., Majeed, K., Phusunti, N., Jamil, F., & Aslam, M. (2020). Valorization of underutilized waste biomass from invasive species to produce biochar for energy and other value-added applications. Environmental Research, 186(February), 109596. https://doi.org/10.1016/j.envres.2020.109596
  7. Al Hosni, S., Domini, M., Vahidzadeh, R., & Bertanza, G. (2024). Potential and Environmental Benefits of Biochar Utilization for Coal/Coke Substitution in the Steel Industry. Energies , 17(11). https://doi.org/10.3390/en17112759
  8. Alam, M., Sarkar, I., Chanda, N., Ghosh, S., & Loha, C. (2024). Enhancing syngas production and hydrogen content in syngas from catalytic slow pyrolysis of biomass in a pilot-scale fixed-bed reactor. Biomass Conversion and Biorefinery, 1–13. https://doi.org/10.1007/s13399-024-05453-0
  9. Antonangelo, J. A., Sun, X., & Eufrade-Junior, H. de J. (2025). Biochar impact on soil health and tree-based crops: a review. Biochar, 7(1). https://doi.org/10.1007/s42773-025-00450-6
  10. Ariyanti, D., Widiasa, I.N., Widiyanti, M., Lesdantina, D., Gao, W. (2023). Agricultural waste-based magnetic biochar produced via hydrothermal route for petroleum spills adsorption. International Journal of Renewable Energy Development, 12 (3), pp. 499 - 507. https://doi.org/10.14710/ijred.2023.52180
  11. Asadi Zeidabadi, Z., Bakhtiari, S., Abbaslou, H., & Ghanizadeh, A. R. (2018). Synthesis, characterization and evaluation of biochar from agricultural waste biomass for use in building materials. Construction and Building Materials, 181, 301–308. https://doi.org/10.1016/j.conbuildmat.2018.05.271
  12. ASTM D3175-11. (2013). Standard Test Method of Volatile Matter in Biomass. ASTM International, West Conshohocken, PA. https://www.astm.org
  13. ASTM E1755-01. (2015). Standard Test Method for ash in Biomass. ASTM International, West Conshohocken, PA. https://www.astm.org
  14. ASTME177-19. (2019). Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods. ASTM International, West Conshohocken, PA
  15. Babu, K. K. B. S., Nataraj, M., Tayappa, M., Vyas, Y., Mishra, R. K., & Acharya, B. (2024). Production of biochar from waste biomass using slow pyrolysis: Studies of the effect of pyrolysis temperature and holding time on biochar yield and properties. Materials Science for Energy Technologies, 7(November 2023), 318–334. https://doi.org/10.1016/j.mset.2024.05.002
  16. Basu, P. (2010). Biomass Characteristics. In Biomass Gasification Design Handbook (First Edition). © 2010 Elsevier Inc. https://doi.org/10.1016/b978-0-12-374988-8.00002-7
  17. Boulemkahel, S., Betoret, E., Benatallah, L., & Rosell, C. M. (2021). Effect of low-pressure homogenization on the physico-chemical and functional properties of rice flour. Food Hydrocolloids, 112, 106373. https://doi.org/10.1016/j.foodhyd.2020.106373
  18. Christwardana M., Suedy S.W.A., Harmoko U., Malika A., Dayanti D. (2025). Carbonization and aromaticity-driven electron transfer in hydrochars from tropical woods as electrochemical cell electrode for energy conversion and storage. Bioresource Technology Reports, 30, art. no. 102107. https://doi.org/10.1016/j.biteb.2025.102107
  19. Cormos, C. (2023). Green hydrogen production from decarbonized biomass gasification : An integrated techno-economic and environmental analysis. Energy, 270(February), 126926. https://doi.org/10.1016/j.energy.2023.126926
  20. Danesh, P., Niaparast, P., Ghorbannezhad, P., & Ali, I. (2023). Biochar Production: Recent Developments, Applications, and challenges. Fuel, 337(November 2022), 126889. https://doi.org/10.1016/j.fuel.2022.126889
  21. De Bhowmick, G., Sarmah, A. K., & Sen, R. (2018). Production and characterization of a value-added biochar mix using seaweed, rice husk and pine sawdust: A parametric study. Journal of Cleaner Production, 200, 641–656. https://doi.org/10.1016/j.jclepro.2018.08.002
  22. Durango Padilla, E. R., Hansted, F. A. S., Luna, C. M. R., de Campos, C. I., & Yamaji, F. M. (2024). Biochar derived from agricultural waste and its application as energy source in blast furnace. Renewable Energy, 220, 119688. https://doi.org/10.1016/j.renene.2023.119688
  23. El-Hussiny, N. A., Khalifa, A. A., El-midany, A. A., Ahmed, A. A., & Shalabi, M. E. H. (2015). Effect of replacement coke breeze by charcoal on technical operation of iron ore sintering. International Journal of Scientific & Engineering Research, 6(2). https://www.ijser.org/paper/Effect-of-replacement-coke-breeze-by-charcoal-on-technical-operation.html
  24. Fraia, S. Di, Shah, M., & Vanoli, L. (2023). A biomass-based polygeneration system for a historical building : A techno-economic and environmental analysis. Energy Conversion and Management, 291(April), 117336. https://doi.org/10.1016/j.enconman.2023.117336
  25. Gabbar, H. A., & Aboughaly, M. (2021). Conceptual process design, energy and economic analysis of solid waste to hydrocarbon fuels via thermochemical processes. Processes, 9(12). https://doi.org/10.3390/pr9122149
  26. Ghosh, B., Sahoo, B. K., Chakraborty, B., Manjhi, K. K., Das, S. K., Sahu, J. N., & Varma, A. K. (2018). Influence of coke structure on coke quality using image analysis method. International Journal of Coal Science and Technology, 5(4), 473–485. https://doi.org/10.1007/s40789-018-0227-0
  27. Gil, M. V., García, R., Pevida, C., & Rubiera, F. (2015). Grindability and combustion behavior of coal and torrefied biomass blends. Bioresource Technology, 191, 205–212. https://doi.org/10.1016/j.biortech.2015.04.117
  28. Gupta, A., Siddiqui, H., Rathi, S., & Mahajani, S. (2021). Intra-pellet transport limitations in the pyrolysis of raintree leaves litter. Energy, 216, 119267. https://doi.org/10.1016/j.energy.2020.119267
  29. Gupta, S., Kishore, N., Ahmed, G., & Kumari, K. (2024). Catalytic co-pyrolysis of leaves of Polyalthia longifolia, woods of Delonix regia and polypropylene grocery bags using zeolite Y-hydrogen catalyst. Biomass Conversion and Biorefinery, 14(14), 15649–15659. https://doi.org/10.1007/s13399-022-03731-3
  30. Hadey, C., Allouch, M., Alami, M., Boukhlifi, F., & Loulidi, I. (2022). Preparation and Characterization of Biochars Obtained from Biomasses for Combustible Briquette Applications. Scientific World Journal, 2022, 1–13. https://doi.org/10.1155/2022/2554475
  31. Haniif P., Dewi S.F., Hadiyanto H., Widya F.(2024). Catalytic Pyrolysis of Biomass Waste Mixture over Activated Carbon and Zeolite Catalyst for the Production Bio Oil.Key Engineering Materials, 978,107 - 117, https://doi.org/10.4028/p-9IGsFm
  32. Huang, X., Cao, J. P., Zhao, X. Y., Wang, J. X., Fan, X., Zhao, Y. P., & Wei, X. Y. (2016). Pyrolysis kinetics of soybean straw using thermogravimetric analysis. Fuel, 169, 93–98. https://doi.org/10.1016/j.fuel.2015.12.011
  33. Ibitoye, S. E., Ajimotokan, H. A., Adeleke, A. A., & Loha, C. (2023). Effect of densification process parameters on the physico-mechanical properties of composite briquettes of corncob and rice husk. Materials Today: Proceedings, June 2023, 1–7. https://doi.org/10.1016/j.matpr.2023.08.253
  34. Ibitoye, S. E., Jen, T. C., Mahamood, R. M., & Akinlabi, E. T. (2021a). Densification of agro-residues for sustainable energy generation: an overview. Bioresources and Bioprocessing, 8(75), 1–19. https://doi.org/10.1186/s40643-021-00427-w
  35. Ibitoye, S. E., Jen, T., Mahamood, R. M., & Akinlabi, E. T. (2021b). Generation of Sustainable Energy from Agro-Residues through Thermal Pretreatment for Developing Nations : A Review. Advanced Energy and Sustainability Research, 2100107, 1–15. https://doi.org/10.1002/aesr.202100107
  36. Ibitoye, S. E., Jen, T., Mahamood, R. M., & Akinlabi, E. T. (2021c). Improving the Combustion Properties of Corncob Biomass via Torrefaction for Solid Fuel Applications. Journal of Composite Science, 5(10), 1–15. https://doi.org/10.3390/jcs5100260
  37. Ibitoye, S. E., Loha, C., Mahamood, R. M., Jen, T., Alam, M., & Sarkar, I. (2024). An overview of biochar production techniques and application in iron and steel industries. Bioresources and Bioprocessing, 11(65), 1–35. https://doi.org/10.1186/s40643-024-00779-z (2024)
  38. Ibitoye, S. E., Mahamood, R. M., Jen, T.-C., & Akinlabi, E. T. (2022). Combustion, Physical, and Mechanical Characterization of Composites Fuel Briquettes from Carbonized Banana Stalk and Corncob. International Journal of Renewable Energy Development, 11(2), 435–447. https://doi.org/10.14710/ijred.2022.41290
  39. Ighalo, J. O., & Adeniyi, A. G. (2020). A mini-review of the morphological properties of biosorbents derived from plant leaves. SN Applied Sciences, 2(3), 1–16. https://doi.org/10.1007/s42452-020-2335-x
  40. Irfan, M., Chen, Q., Yue, Y., Pang, R., Lin, Q., Zhao, X., & Chen, H. (2016). Co-production of biochar, bio-oil and syngas from halophyte grass (Achnatherum splendens L.) under three different pyrolysis temperatures. Bioresource Technology, 211, 457–463. https://doi.org/10.1016/j.biortech.2016.03.077
  41. Khanna, R., Li, K., Wang, Z., Sun, M., Zhang, J., & Mukherjee, P. S. (2019). Biochars in iron and steel industries. Char and Carbon from Biomass ,2017. https://doi.org/10.1016/B978-0-12-814893-8.00011-0
  42. Khater, E. S., Bahnasawy, A., Hamouda, R., Sabahy, A., Abbas, W., & Morsy, O. M. (2024). Biochar production under different pyrolysis temperatures with different types of agricultural wastes. Scientific Reports, 14(1), 1–8. https://doi.org/10.1038/s41598-024-52336-5
  43. Kieush, L., Rieger, J., Schenk, J., Brondi, C., Rovelli, D., Echterhof, T., Cirilli, F., Thaler, C., Jaeger, N., Snaet, D., Peters, K., & Colla, V. (2022). A Comprehensive Review of Secondary Carbon Bio-Carriers for Application in Metallurgical Processes : Utilization of Torrefied Biomass in Steel Production. Metals, 12(2005), 1–38. https://doi.org/10.3390/met12122005
  44. Kieush, L., Schenk, J., Koveria, A., Hrubiak, A., Hopfinger, H., & Zheng, H. (2023). Evaluation of Slag Foaming Behavior Using Renewable Carbon Sources in Electric Arc Furnace-Based Steel Production. Energies, 13(722), 1–16. https://doi.org/10.3390/en16124673
  45. Kongto, P., Palamanit, A., Chaiprapat, S., & Tippayawong, N. (2021). Enhancing the fuel properties of rubberwood biomass by moving bed torrefaction process for further applications. Renewable Energy, RENE 14903, 1–30. https://doi.org/10.1016/j.renene.2021.02.012
  46. Lahiri, A., Daniel, S., Kanthapazham, R., Vanaraj, R., Thambidurai, A., & Sophie, L. (2023). A critical review on food waste management for the production of materials and biofuel. Journal of Hazardous Materials Advances, 10(February), 100266. https://doi.org/10.1016/j.hazadv.2023.100266
  47. Leng, L., Xiong, Q., Yang, L., Li, H., Zhou, Y., Zhang, W., Jiang, S., Li, H., & Huang, H. (2021). An overview on engineering the surface area and porosity of biochar. Science of the Total Environment, 763, 144204. https://doi.org/10.1016/j.scitotenv.2020.144204
  48. Loo, S. van, & Koppejan, J. (2008). The Handbook of Biomass Combustion and Co-firin (S. van Loo & J. Koppejan (eds.); Issue 112). Earthscan
  49. Lumay, G., Boschini, F., Traina, K., Bontempi, S., Remy, J. C., Cloots, R., & Vandewalle, N. (2012). Measuring the flowing properties of powders and grains. Powder Technology, 224, 19–27. https://doi.org/10.1016/j.powtec.2012.02.015
  50. Magasiner, N., Van Alphen, C., Inkson, M. B., & Misplon, B. J. (2002). Characterising fuels for biomass - Coal-fired cogeneration. International Sugar Journal, 104(1242), 251–267
  51. Mendonça, F. G. de, Cunha, I. T. da, Soares, R. R., Tristão, J. C., & Lago, R. M. (2017). Tuning the surface properties of biochar by thermal treatment. Bioresource Technology, 246(May), 28–33. https://doi.org/10.1016/j.biortech.2017.07.099
  52. Mousa, E. A., Babich, A., Senk, D., Metallurgy, F., & Aachen, R. (2015). Iron Ore Sintering Process with Biomass Utilization E A Mousa, A Babich, D Senk, Institute of Ferrous Metallurgy Iron Ore Sintering Process with Biomass Utilization. METEC and 2nd ESTAD, Düsseldorf, 15 – 19 June 2015, 1–13
  53. Mu, L., Wang, R., Xie, P., Li, Y., Huang, X., Yin, H., & Dong, M. (2023). Comparative investigation on the pyrolysis of crop, woody, and herbaceous biomass : Pyrolytic products, structural characteristics, and CO 2 gasification. Fuel, 335(November 2022), 126940. https://doi.org/10.1016/j.fuel.2022.126940
  54. Mudryk, K., Jewiarz, M., Wr, M., Niemiec, M., & Dyjakon, A. (2021). Evaluation of Urban Tree Leaf Biomass-Potential, Physico-Mechanical and Chemical Parameters of Raw Material and Solid Biofuel. Energies, 14(818), 1–14. https://doi.org/10.3390/en14040818
  55. Nugraha, S. S., Sartohadi, J., & Nurudin, M. (2022). Field-Based Biochar, Pumice, and Mycorrhizae Application on Dryland Agriculture in Reducing Soil Erosion. Applied and Environmental Soil Science, 2022. https://doi.org/10.1155/2022/1775330
  56. Oginni, O., & Singh, K. (2019). Pyrolysis characteristics of Arundo donax harvested from a reclaimed mine land. Industrial Crops and Products, 133(March), 44–53. https://doi.org/10.1016/j.indcrop.2019.03.014
  57. Omoniyi, P., Ibitoye, S., Popoola, O., Ikubanni, P., Adeleke, A., Mahamood, M., Jen, T. C., & Akinlabi, E. (2023). Recycling Plastic Waste as Composite Reinforcement. E3S Web of Conferences, 430, 8–12. https://doi.org/10.1051/e3sconf/202343001298
  58. Ong C.K., Ghazali N.F., Hasbullah H., Ismail A.F., Rahman S.A., Kusworo T.D., Lee C.T. (2024). Biomass-Based Biochar as Adsorbent: a Mini Review of Production Methods, Characterization, and Sustainable Applications. Chemical Engineering Transactions , 113, pp. 493 - 498. https://doi.org/10.3303/CET24113083
  59. Osman, A. I., Fawzy, S., Farghali, M., El-Azazy, M., Elgarahy, A. M., Fahim, R. A., Maksoud, M. I. A. A., Ajlan, A. A., Yousry, M., Saleem, Y., & Rooney, D. W. (2022). Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: a review. Environmental Chemistry Letters, 20(4), 2385–2485. https://doi.org/10.1007/s10311-022-01424-x
  60. Oyebamiji, O. O., Olaleru, A. S., Oyeleke, R. B., & Ofodile, L. N. (2025). Evaluation and characterization of biochar and briquettes from agricultural wastes for sustainable energy production. Waste Management Bulletin, 3(3), 100198. https://doi.org/10.1016/j.wmb.2025.100198
  61. Parikh, J., Channiwala, S. A., & Ghosal, G. K. (2007). A correlation for calculating elemental composition from proximate analysis of biomass materials. Fuel, 86(12–13), 1710–1719. https://doi.org/10.1016/j.fuel.2006.12.029
  62. Pariyar, P., Kumari, K., Jain, M. K., & Jadhao, P. S. (2020). Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application. Science of the Total Environment, 713, 136433. https://doi.org/10.1016/j.scitotenv.2019.136433
  63. Patil, Y., Ku, X., & Vasudev, V. (2023). Pyrolysis Characteristics and Determination of Kinetic and Thermodynamic Parameters of Raw and Torrefied Chinese Fir. ACS Omega, 8(38), 34938–34947. https://doi.org/10.1021/acsomega.3c04328
  64. Pattanayak, S., & Loha, C. (2023). Investigation of kinetic triplets and thermodynamic parameters of different species of bamboo-biomass from North-East India. International Journal of Chemical Kinetics, March, 335–349. https://doi.org/10.1002/kin.21639
  65. Pattanayak, S., Loha, C., Kumar Singh, R., & Saha, D. (2023). Experimental investigation of thermal performance, kinetic triplets, and synergistic effect for bamboo-waste plastic (PP & PE) blends using thermogravimetric analyser in N2 atmosphere. Sustainable Energy Technologies and Assessments, 57(May), 103266. https://doi.org/10.1016/j.seta.2023.103266
  66. Pohlmann, J. G., Borrego, A. G., Osório, E., Diez, M. A., & Vilela, A. C. F. (2016). Combustion of eucalyptus charcoals and coals of similar volatile yields aiming at blast furnace injection in a CO2 mitigation environment. Journal of Cleaner Production, 129, 1–11. https://doi.org/10.1016/j.jclepro.2016.04.138
  67. Putri, U. M., Sarifuddin, & Bintang. (2023). Characteristic of Mahogany leaves as biochar and its effect with Urea fertilization on nitrogen status and growth of corn in Ultisol. IOP Conference Series: Earth and Environmental Science, 1241(1). https://doi.org/10.1088/1755-1315/1241/1/012025
  68. Qiu, L., Li, C., Zhang, S., Wang, S., Li, B., Cui, Z., Tang, Y., & Hu, X. (2023). Distinct property of biochar from pyrolysis of poplar wood, bark, and leaves of the same origin. Industrial Crops and Products, 202(June), 117001. https://doi.org/10.1016/j.indcrop.2023.117001
  69. Rajendra, I. M., Winaya, I. N. S., Ghurri, A., & Wirawan, I. K. G. (2019). Pyrolysis study of coconut leaf’s biomass using thermogravimetric analysis Pyrolysis study of coconut leaf’s biomass using thermogravimetric analysis. IOP Conf. Series: Materials Science and Engineering, 539, 012017. https://doi.org/10.1088/1757-899X/539/1/012017
  70. Safarian, S. (2023). To what extent could biochar replace coal and coke in steel industries ? Fuel, 339(December 2022), 127401. https://doi.org/10.1016/j.fuel.2023.127401
  71. Satomi, I. M., Mustafa, B. G., Mohammed, H. D., Abdulaziz, L., & Silas, K. (2025). Biochar Production from Leave Biomass for Environmental Sustainability and Applications. Chem. Res. Tech. 2, 12–18. https://www.chemrestech.com/article_213888_2fee631450cfb6787c8477223d026819.pdf
  72. Selvarajoo, A., & Oochit, D. (2020). Effect of pyrolysis temperature on product yields of palm fibre and its biochar characteristics. Materials Science for Energy Technologies, 3, 575–583. https://doi.org/10.1016/j.mset.2020.06.003
  73. Singh, K. R., Sarkar, A., & Chakraborty, P. J. (2019). Effect of torrefaction on the physicochemical properties of pigeon pea stalk (Cajanus cajan) and estimation of kinetic parameters. Renewable Energy, 138, 805–819. https://doi.org/10.1016/j.renene.2019.02.022
  74. Singh, S., Chakraborty, J. P., & Mondal, M. K. (2020). Torrefaction of woody biomass (Acacia nilotica): Investigation of fuel and flow properties to study its suitability as a good quality solid fuel. Renewable Energy, 153, 711–724. https://doi.org/10.1016/j.renene.2020.02.037
  75. Spokas, K. A. (2010). Review of the stability of biochar in soils: Predictability of O:C molar ratios. Carbon Management, 1(2), 289–303. https://doi.org/10.4155/cmt.10.32
  76. Stylianou, M., Christou, A., Dalias, P., Polycarpou, P., Michael, C., Agapiou, A., Papanastasiou, P., & Fatta-Kassinos, D. (2020). Physicochemical and structural characterization of biochar derived from the pyrolysis of biosolids, cattle manure and spent coffee grounds. Journal of the Energy Institute, 93(5), 2063–2073. https://doi.org/10.1016/j.joei.2020.05.002
  77. Szalay, A., Kelemen, A., & Pintye-Hódi, K. (2015). The influence of the cohesion coefficient (C) on the flowability of different sorbitol types. Chemical Engineering Research and Design, 93(May), 349–354. https://doi.org/10.1016/j.cherd.2014.05.008
  78. Tan, M. (2023). Conversion of agricultural biomass into valuable biochar and their competence on soil fertility enrichment. Environmental Research, 234(June), 116596. https://doi.org/10.1016/j.envres.2023.116596
  79. Tannous, K., Lam, P. S., Sokhansanj, S., & Grace, J. R. (2013). Physical properties for flow characterization of ground biomass from douglas fir wood. Particulate Science and Technology, 31(3), 291–300. https://doi.org/10.1080/02726351.2012.732676
  80. Trif-Tordai, G., & Ionel, I. (2011). Waste Biomass as Alternative Bio-Fuel - Co-Firing versus Direct Combustion. In M. Manzanera (Ed.), Alternative Fuel (pp. 285–306). Intechopen. https://doi.org/10.5772/25030
  81. UN. (2024). Take Action for the Sustainable Development Goals. UN Sustainable Development Goals. https://www.un.org/sustainabledevelopment/sustainable-development-goals/
  82. Wojtacha-Rychter, K., & Smoliński, A. (2019). A study of dynamic adsorption of propylene and ethylene emitted from the process of coal self-heating. Scientific Reports, 9(1), 1–15. https://doi.org/10.1038/s41598-019-54831-6
  83. Wu, X. F., Li, S. X., & Li, M. F. (2019). Effect of temperature on the properties of charcoal prepared from carbonization of biorefinery lignin. BioResources, 13(3), 6736–6745. https://doi.org/10.15376/biores.13.3.6736-6745
  84. Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12–13), 1781–1788. https://doi.org/10.1016/j.fuel.2006.12.013
  85. Yiga, V. A., Lubwama, M., & Olupot, P. W. (2023). Pyrolysis, kinetics and thermodynamic analyses of rice husks/clay fiber-reinforced polylactic acid composites using thermogravimetric analysis. Journal of Thermal Analysis and Calorimetry, 148(9), 3457–3477. https://doi.org/10.1007/s10973-022-11927-y
  86. Zhang, A., Liu, Y., Pan, G., Hussain, Q., Li, L., Zheng, J., & Zhang, X. (2012). Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant and Soil, 351(1–2), 263–275. https://doi.org/10.1007/s11104-011-0957-x
  87. Zhao, S. X., Ta, N., & Wang, X. D. (2017). Effect of temperature on the structural and physicochemical properties of biochar with apple tree branches as feedstock material. Energies, 10(9). https://doi.org/10.3390/en10091293

Last update:

No citation recorded.

Last update: 2025-10-20 13:26:27

No citation recorded.