skip to main content

Harnessing renewable energy and technological innovation to alleviate energy poverty in least developed countries: A pathway toward low-carbon and sustainable development

School of Business and Economics, United International University, Dhaka, Bangladesh

Received: 6 Apr 2025; Revised: 10 Jul 2025; Accepted: 26 Jul 2025; Available online: 3 Aug 2025; Published: 1 Sep 2025.
Editor(s): Grigorios Kyriakopoulos
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Energy poverty remains a critical developmental challenge in Least Developed Countries (LDCs). However, existing literature tends to examine renewable energy, technological innovation, and carbon emissions separately, often overlooking their interconnected impact on energy poverty. Addressing this significant research gap, the present study investigates the combined roles of renewable energy consumption (REC), technological innovation (TI), and CO₂ emissions in alleviating energy poverty in LDCs from 2000 to 2020. Specifically, the study explores: (1) how renewable energy consumption influences energy poverty reduction; (2) the extent to which technological innovation improves energy accessibility and affordability; and (3) the impact of carbon emissions on pathways to reducing energy poverty. Utilizing advanced econometric methods on an extensive panel dataset, the findings reveal that a 10% increase in REC reduces energy poverty by approximately 0.814% to 1.105%, underscoring renewable energy’s vital role in providing sustainable and affordable energy access. Similarly, technological innovation significantly mitigates energy poverty; a 10% improvement in TI results in a 1.215% to 1.564% decrease in energy deprivation, highlighting innovation’s potential to overcome infrastructural barriers in energy delivery. Furthermore, a 10% reduction in CO₂ emissions correlates with a 0.914% to 1.399% decline in energy poverty, reinforcing that low-carbon strategies effectively promote both environmental sustainability and equitable energy access. This study uniquely integrates these factors, offering novel empirical insights into their collective influence on energy poverty in low-income contexts—an area previously underexplored. The findings emphasize the urgent need for coordinated policy frameworks and targeted investments in renewable energy infrastructure and technological innovation. Such integrated strategies are essential to simultaneously address energy poverty and environmental challenges, fostering sustainable, low-carbon growth trajectories aligned with the global Sustainable Development Goals (SDGs).

Fulltext View|Download
Keywords: Renewable energy; Technological Innovation; Energy Poverty; Least Developed Countries; CO2 Emission

Article Metrics:

Article Info
Section: Original Research Article
Language : EN
  1. Adusah‐Poku, F., Adjei‐Mantey, K., & Kwakwa, P. A. (2021). Are Energy‐poor Households Also Poor? Evidence From Ghana. Poverty & Public Policy, 13(1), 32-58. https://doi.org/10.1002/pop4.301
  2. Adusah‐Poku, F., & Takeuchi, K. (2019). Energy Poverty in Ghana: Any Progress So Far? Renewable and Sustainable Energy Reviews, 112, 853-864. https://doi.org/10.1016/j.rser.2019.06.038
  3. Akhtar, S. (2023). Sustainable Lifestyle: A Path Towards Environmental Sustainability and Sustainable Development. Management Journal for Advanced Research, 3(4), 50-53. https://doi.org/10.54741/mjar.3.4.8
  4. Alshehhi, A., Nobanee, H., & Khare, N. (2018). The Impact of Sustainability Practices on Corporate Financial Performance: Literature Trends and Future Research Potential. Sustainability, 10(2), 494. https://doi.org/10.3390/su10020494
  5. Amin, A., Liu, Y., Yu, J., Chandio, A. A., Rasool, S. F., Luo, J., & Zaman, S. (2020). How does energy poverty affect economic development? A panel data analysis of South Asian countries. Environmental Science and Pollution Research, 27, 31623-31635. https://doi.org/10.1007/s11356-020-09173-6
  6. Ampatzidis, P. (2023). Decarbonising at Scale: Extracting Strategic Thinking From EPC and Deprivation Data. Building Services Engineering Research and Technology, 44(6), 625-639. https://doi.org/10.1177/01436244231203193
  7. Varo, A., Jiglau, G., Grossmann, K. et al. Addressing energy poverty through technological and governance innovation. Energ Sustain Soc 12, 49. https://doi.org/10.1186/s13705-022-00377-x
  8. Anais, V., Jiglau, G., Grossmann, K., & Guyet, R. (2022). Addressing energy poverty through technological and governance innovation. Energy, Sustainability and Society, 12, Article number: 49. https://doi.org/10.1186/s13705-022-00377-x
  9. Baniya, B., & Giurco, D. (2021). Resource-efficient and renewable energy transition in the five least developed countries of Asia: a post-COVID-19 assessment. Sustainability: Science, Practice and Policy, 17(1), 404-413. https://doi.org/10.1080/15487733.2021.2002025
  10. Bansal, P., & DesJardine, M. R. (2014). Business Sustainability: It Is About Time. Strategic Organization, 12(1), 70-78. https://doi.org/10.1177/1476127013520265
  11. Barbier, E. B. (2014). Climate Change Mitigation Policies and Poverty. Wiley Interdisciplinary Reviews Climate Change, 5(4), 483-491. https://doi.org/10.1002/wcc.281
  12. Batool, K., Zhao, Z.-Y., Atif, F., & Dilanchiev, A. (2022). Nexus Between Energy Poverty and Technological Innovations: A Pathway for Addressing Energy Sustainability [Original Research]. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.888080
  13. Baumgartner, R. J., & Ebner, D. (2010). Corporate Sustainability Strategies: Sustainability Profiles and Maturity Levels. Sustainable Development, 18(2), 76-89. https://doi.org/10.1002/sd.447
  14. Bersvendsen, T., & Ditzen, J. (2021). Testing for slope heterogeneity in Stata. The Stata Journal, 21(1), 51-80. https://doi.org/10.1177/1536867x211000004
  15. Bhattacharyya, S. C., & Palit, D. (2014). Mini-grids for rural electrification of developing countries: analysis and case studies from South Asia. Springer. https://doi.org/10.1007/978-3-319-04816-1
  16. Biernat-Jarka, A., Trębska, P., & Jarka, S. (2021). The role of renewable energy sources in alleviating energy poverty in households in Poland. Energies, 14(10), 2957. https://doi.org/10.3390/en14102957
  17. Blomquist, J., & Westerlund, J. (2013). Testing slope homogeneity in large panels with serial correlation. Economics Letters, 121(3), 374-378. https://doi.org/10.1016/j.econlet.2013.09.012
  18. Bousnina, R., & Gabsi, F. B. (2023). Energy poverty, government expenditure, and institution factors in Sub-Saharan Africa countries: evidence based on a panel threshold model. Environmental Science and Pollution Research, 30(24), 65512-65526. https://doi.org/10.1007/s11356-023-27005-1
  19. Breusch, T. S., & Pagan, A. R. (1980). The Lagrange multiplier test and its applications to model specification in econometrics. The Review of Economic Studies, 47(1), 239-253. https://www.jstor.org/stable/pdf/2297111.pdf
  20. Brown, H., & Vera‐Toscano, E. (2021). Energy Poverty and Its Relationship With Health: Empirical Evidence on the Dynamics of Energy Poverty and Poor Health in Australia. Sn Business & Economics, 1(10). https://doi.org/10.1007/s43546-021-00149-3
  21. Certomà, C., Corsini, F., Di Giacomo, M., & Guerrazzi, M. (2023). Beyond Income and Inequality: The Role of Socio-political Factors for Alleviating Energy Poverty in Europe. Social Indicators Research, 169(1), 167-208. https://doi.org/10.1007/s11205-023-03148-z
  22. Chen, S. (2021). The Urbanisation Impacts on the Policy Effects of the Carbon Tax in China. Sustainability, 13(12), 6749. https://doi.org/10.3390/su13126749
  23. Cheng, S., Ling, M., & Xing, L. (2021). Energy Technological Innovation and Carbon Emissions Mitigation: Evidence From China. Kybernetes, 51(3), 982-1008. https://doi.org/10.1108/k-09-2020-0550
  24. Chevalier, J.-M., & Ouédraogo, N. S. (2009). Energy Poverty and Economic Development. In J.-M. Chevalier (Ed.), The New Energy Crisis: Climate, Economics and Geopolitics (pp. 115-144). Palgrave Macmillan UK. https://doi.org/10.1057/9780230242234_5
  25. Chien, F., Hsu, C.-C., Zhang, Y., Tran, T. D., & Li, L. (2022). Assessing the impact of green fiscal policies and energy poverty on energy efficiency. Environmental Science and Pollution Research, 29(3), 4363-4374. https://doi.org/10.1007/s11356-021-15854-7
  26. Coccia, M. (2021). Technological innovation. innovations, 11, I12. https://doi.org/.10.1002/9781405165518.wbeost011.pub2
  27. Cyrek, M., & Cyrek, P. (2022). Rural Specificity as a Factor Influencing Energy Poverty in European Union Countries. Energies, 15(15), 5463. https://doi.org/10.3390/en15155463
  28. D’arlon, R. (2014). Hybrid mini-grids for rural electrification: Lessons learned. Brussels: Alliance for Rural Electrification (ARE). USAID. https://www.ctc-n.org/sites/www.ctc-n.org/files/resources/hybrid_mini-grids_for_rural_electrification_2014.pdf
  29. Demastus, J., & Landrum, N. E. (2023). Organizational Sustainability Schemes Align With Weak Sustainability. Business Strategy and the Environment, 33(2), 707-725. https://doi.org/10.1002/bse.3511
  30. Dong, K., Jiang, Q., Shahbaz, M., & Zhao, J. (2021). Does low-carbon energy transition mitigate energy poverty? The case of natural gas for China. Energy Economics, 99, 105324. https://doi.org/10.1016/j.eneco.2021.105324
  31. Dong, K., Ren, X., & Zhao, J. (2021). How does low-carbon energy transition alleviate energy poverty in China? A nonparametric panel causality analysis. Energy Economics, 103, 105620. https://doi.org/10.1016/j.eneco.2021.105620
  32. Dong, K., Taghizadeh-Hesary, F., & Zhao, J. (2022). How inclusive financial development eradicates energy poverty in China? The role of technological innovation. Energy Economics, 109, 106007. https://doi.org/10.1016/j.eneco.2022.106007
  33. Dong, X., Zhuang, Y., & Gai, T. (2025). Analyzing Belt & Road’s Impact on Sustainable Development via Green Economy, Public Investment, and Renewable Energy. International Journal of Hydrogen Energy. https://www.sciencedirect.com/science/article/pii/S0360319925008729
  34. Dumitrescu, E.-I., & Hurlin, C. (2012). Testing for Granger non-causality in heterogeneous panels. Economic modelling, 29(4), 1450-1460. https://doi.org/10.1016/j.econmod.2012.02.014
  35. Duong, Q. K., & Flaherty, E. (2022). Does Growth Reduce Poverty? The Mediating Role of Carbon Emissions and Income Inequality. Economic Change and Restructuring, 56(5), 3309-3334. https://doi.org/10.1007/s10644-022-09462-9
  36. Dzator, J., & Acheampong, A. O. (2020). The Impact of Energy Innovation on Carbon Emission Mitigation: An Empirical Evidence From OECD Countries. 1-19. https://doi.org/10.1007/978-3-319-58538-3_213-1
  37. Ebadi, Y. M., & Utterback, J. M. (1984). The effects of communication on technological innovation. Management Science, 30(5), 572-585. https://doi.org/10.1287/mnsc.30.5.572
  38. Ehnert, I., Parsa, S., Roper, I., Wagner, M., & Müller‐Camen, M. (2015). Reporting on Sustainability and HRM: A Comparative Study of Sustainability Reporting Practices by the World's Largest Companies. The International Journal of Human Resource Management, 27(1), 88-108. https://doi.org/10.1080/09585192.2015.1024157
  39. Emanuel, R., & Adams, J. (2011). College Students' Perceptions of Campus Sustainability. International Journal of Sustainability in Higher Education, 12(1), 79-92. https://doi.org/10.1108/14676371111098320
  40. González-Eguino, M. (2015). Energy poverty: An overview. Renewable and Sustainable Energy Reviews, 47, 377-385. https://doi.org/10.1016/j.rser.2015.03.013
  41. Grübler, A., Nakićenović, N., & Victor, D. G. (1999). Dynamics of energy technologies and global change. Energy Policy, 27(5), 247-280. https://doi.org/10.1016/S0301-4215(98)00067-6
  42. Haoyan, L. (2023). Are Poverty Alleviation and Carbon Reduction Parallel Paths? Empirical Research on the Interaction Between Poverty Alleviation and Carbon Emissions. The Journal of Environment & Development, 32(3), 274-301. https://doi.org/10.1177/10704965231190128
  43. Heffron, R. J. (2022). Applying energy justice into the energy transition. Renewable and Sustainable Energy Reviews, 156, 111936. https://doi.org/10.1016/j.rser.2021.111936
  44. Hizarci-Payne, A. K. (2020). Sustainable Entrepreneurship. 1-5. https://doi.org/10.1007/978-3-030-02006-4_23-1
  45. Hu, X., Cheng, X., & Qiu, X. (2020). Impact of Carbon Price on Renewable Energy Using Power Market System. 671-677. https://doi.org/10.1007/978-981-15-2341-0_84
  46. Iram, R., Anser, M. K., Awan, R. U., Ali, A., Abbas, Q., & Chaudry, I. S. (2021). Prioritization of renewable solar energy to prevent energy insecurity: An integrated role. The Singapore Economic Review, 66(02), 391-412. https://doi.org/10.1142/s021759082043002x
  47. Ismail, Z., & Khembo, P. (2015). Determinants of energy poverty in South Africa. Journal of Energy in Southern Africa, 26(3), 66-78. https://doi.org/10.17159/2413-3051/2015/v26i3a2130
  48. Jiang, Y., & Khan, H. (2023). The relationship between renewable energy consumption, technological innovations, and carbon dioxide emission: evidence from two-step system GMM. Environmental Science and Pollution Research, 30(2), 4187-4202. https://doi.org/10.1007/s11356-022-22391-4
  49. Jones, E. C. (2023). Identifying Themes in Energy Poverty Research: Energy Justice Implications for Policy, Programs, and the Clean Energy Transition. Energies, 16(18), 6698. https://doi.org/10.3390/en16186698
  50. Juodis, A., & Reese, S. (2022). The Incidental Parameters Problem in Testing for Remaining Cross-Section Correlation. Journal of Business & Economic Statistics, 40(3), 1191-1203. https://doi.org/10.1080/07350015.2021.1906687
  51. Juszczyk, O., Juszczyk, J., Juszczyk, S., & Takala, J. (2022). Barriers for renewable energy technologies diffusion: Empirical evidence from Finland and Poland. Energies, 15(2), 527. https://doi.org/10.3390/en15020527
  52. Karduri, R. K. R., & Ananth, C. (2023). Sustainable Energy for All: Addressing Energy Poverty through Innovation. International Journal of Advanced Research In Basic Engineering Sciences and Technology (IJARBEST), 8(5), 25-38 https://ijarbest.com/journal/v8i5/2357
  53. Karekezi, S., & Kithyoma, W. (2002). Renewable energy strategies for rural Africa: is a PV-led renewable energy strategy the right approach for providing modern energy to the rural poor of sub-Saharan Africa? Energy Policy, 30(11-12), 1071-1086. https://doi.org/10.1016/S0301-4215(02)00059-9
  54. Kocak, E., Ulug, E. E., & Oralhan, B. (2023). The impact of electricity from renewable and non-renewable sources on energy poverty and greenhouse gas emissions (GHGs): Empirical evidence and policy implications. Energy, 272, 127125. https://doi.org/10.1016/j.energy.2023.127125
  55. Landrum, N. E., & Ohsowski, B. M. (2017). Identifying Worldviews on Corporate Sustainability: A Content Analysis of Corporate Sustainability Reports. Business Strategy and the Environment, 27(1), 128-151. https://doi.org/10.1002/bse.1989
  56. Li, J., Li, J., Guo, K., Ji, Q., & Zhang, D. (2024). Policy spillovers from climate actions to energy poverty: international evidence. Humanities and Social Sciences Communications, 11(1), 1106. https://doi.org/10.1057/s41599-024-03614-0
  57. Litaaba-Akila, D., Koriko, M., Ezin, Y.A. (2023). Energy poverty and household welfare: evidence in Togo, 19 October 2023, PREPRINT (Version 1) available at Research Square https://doi.org/10.21203/rs.3.rs-3438724/v1
  58. Lundgren, A. (1991). Technological innovation and industrial evolution : the emergence of industrial networks [Economic Research Institute, Stockholm School of Economics [Ekonomiska forskningsinstitutet vid Handelshögsk.] (EFI)]. https://research.hhs.se/esploro/outputs/doctoral/Technological-innovation-and-industrial-evolution/991001480244906056#file-0
  59. Martín-Ortega, J. L. (2024). Enhancing Transparency of Climate Efforts: MITICA’s Integrated Approach to Greenhouse Gas Mitigation. Sustainability, 16(10), 4219. https://doi.org/10.3390/su16104219
  60. Mirziyoyeva, Z., & Salahodjaev, R. (2023). Renewable energy, GDP and CO2 emissions in high-globalized countries [Original Research]. Frontiers in Energy Research, 11. https://doi.org/10.3389/fenrg.2023.1123269
  61. Ntanos, S., Skordoulis, M., Kyriakopoulos, G., Arabatzis, G., Chalikias, M., Galatsidas, S.,…Katsarou, A. (2018). Renewable energy and economic growth: Evidence from European countries. Sustainability, 10(8), 2626. https://doi.org/10.3390/su10082626
  62. Nussbaumer, P., Bazilian, M., & Modi, V. (2012). Measuring Energy Poverty: Focusing on What Matters. Renewable and Sustainable Energy Reviews, 16(1), 231-243. https://doi.org/10.1016/j.rser.2011.07.150
  63. Nydrioti, I., Sebos, I., Kitsara, G., & Assimacopoulos, D. (2024). Effective management of urban water resources under various climate scenarios in semiarid mediterranean areas. Scientific Reports, 14(1), 28666. https://doi.org/10.1038/s41598-024-79938-3
  64. Ogwumike, F. O., & Ozughalu, U. M. (2015). Analysis of Energy Poverty and Its Implications for Sustainable Development in Nigeria. Environment and Development Economics, 21(3), 273-290. https://doi.org/10.1017/s1355770x15000236
  65. Okushima, S. (2017). Gauging Energy Poverty: A Multidimensional Approach. Energy, 137, 1159-1166. https://doi.org/10.1016/j.energy.2017.05.137
  66. Palma, P. S., Gouveia, J. P., Mahoney, K., & Bessa, S. (2022). It Starts at Home: Space Heating and Cooling Efficiency for Energy Poverty and Carbon Emissions Reduction in Portugal. People Place and Policy Online, 16(1), 13-32. https://doi.org/10.3351/ppp.2022.5344968696
  67. Pedroni, P. (2004). Panel cointegration: asymptotic and finite sample properties of pooled time series tests with an application to the PPP hypothesis. Econometric theory, 20(3), 597-625. https://doi.org/10.1017/S0266466604203073
  68. Pesaran, M. H. (2004). General diagnostic tests for cross section dependence in panels. Cambridge Working Papers. Economics, 1240(1), 1. https://doi.org/10.2139/ssrn.572504
  69. Pesaran, M. H. (2006). Estimation and inference in large heterogeneous panels with a multifactor error structure. Econometrica, 74(4), 967-1012. https://doi.org/10.1111/j.1468-0262.2006.00692.x
  70. Pesaran, M. H. (2007). A simple panel unit root test in the presence of cross‐section dependence. Journal of applied econometrics, 22(2), 265-312. https://doi.org/10.1002/jae.951
  71. Pesaran, M. H., Ullah, A., & Yamagata, T. (2008). A bias‐adjusted LM test of error cross‐section independence. The econometrics journal, 11(1), 105-127. https://doi.org/10.1111/j.1368-423X.2007.00227.x
  72. Pombo-Romero, J., Langeveld, H., & Fernández-Redondo, M. (2023). Diffusion of renewable energy technology on Spanish farms: drivers and barriers. Environment, Development and Sustainability, 25(10), 11769-11787. https://doi.org/10.1007/s10668-022-02553-7
  73. Rusch, M., Schöggl, J. P., & Baumgartner, R. J. (2022). Application of Digital Technologies for Sustainable Product Management in a Circular Economy: A Review. Business Strategy and the Environment, 32(3), 1159-1174. https://doi.org/10.1002/bse.3099
  74. Sharma, S. V., Han, P., & Sharma, V. K. (2019). Socio-economic determinants of energy poverty amongst Indian households: A case study of Mumbai. Energy Policy, 132, 1184-1190. https://doi.org/10.1016/j.enpol.2019.06.068
  75. Şoavă, G., Mehedințu, A., Sterpu, M., & Raduteanu, M. (2018). Impact of Renewable Energy Consumption on Economic Growth: Evidence From European Union Countries. Technological and Economic Development of Economy, 24(3), 914-932. https://doi.org/10.3846/tede.2018.1426
  76. Solow, R. M. (1956). A Contribution to the Theory of Economic Growth. The Quarterly Journal of Economics, 70(1), 65-94. https://doi.org/10.2307/1884513
  77. Sovacool, B. K., & Dworkin, M. H. (2015). Energy justice: Conceptual insights and practical applications. Applied Energy, 142, 435-444. https://doi.org/10.1016/j.apenergy.2015.01.002
  78. Stein, S. H. (2007). A Beginner's Guide to the Solow Model. The Journal of Economic Education, 38(2), 187-193. http://www.jstor.org/stable/30042766
  79. Suciu, S. (2023). Communication Challenges for Sustainability. Professional Communication and Translation Studies, 11, 3-6. https://doi.org/10.59168/yuot8105
  80. Sun, C., Khan, A., & Ren, Y. (2023). Empowering Progress: Education, innovations and financial development in the battle against energy poverty. Journal of Cleaner Production, 425, 138941. https://doi.org/10.1016/j.jclepro.2023.138941
  81. Taltavull de La Paz, P., Juárez Tárrega, F., Su, Z., & Monllor, P. (2022). Sources of Energy Poverty: A Factor Analysis Approach for Spain [Original Research]. Frontiers in Energy Research, 10. https://doi.org/10.3389/fenrg.2022.847845
  82. Taušová, M. (2024a). Development of Energy Poverty and Its Solutions From the Perspective of Renewables Use. https://doi.org/10.20944/preprints202406.1192.v1
  83. Taušová, M. (2024b). Development of Energy Poverty and Its Solutions Through the Use of Renewables: The EU Case With a Focus on Slovakia. Energies, 17(15), 3762. https://doi.org/10.3390/en17153762
  84. Tiwary, A. R. (2023). Sustaining Education, Educating Sustainability. Edu.Lrng.Dvp.Ntn, 1(1), 24-25. https://doi.org/10.26480/eldn.01.2023.24.25
  85. Ullah, S., Khan, M., & Yoon, S.-M. (2021). Measuring Energy Poverty and Its Impact on Economic Growth in Pakistan. Sustainability, 13(19), 10969. https://www.mdpi.com/2071-1050/13/19/10969
  86. van der Kroon, B., Brouwer, R., & van Beukering, P. J. H. (2013). The energy ladder: Theoretical myth or empirical truth? Results from a meta-analysis. Renewable and Sustainable Energy Reviews, 20, 504-513. https://doi.org/10.1016/j.rser.2012.11.045
  87. Wang, Y., Qiao, G., Ahmad, M., & Yang, D.. (2023). Modeling the Impact of Fiscal Decentralization on Energy Poverty. International Journal of Environmental Research and Public Health. 20(5), 4360; https://doi.org/10.3390/ijerph20054360
  88. Wang, R., Qamruzzaman, M., & Karim, S. (2024). Unveiling the power of education, political stability and ICT in shaping technological innovation in BRI nations. Heliyon, 10(9). https://doi.org/10.1016/j.heliyon.2024.e30142
  89. Wang, W., Xiao, W., & Bai, C. (2022). Can renewable energy technology innovation alleviate energy poverty? Perspective from the marketization level. Technology in Society, 68, 101933. https://doi.org/10.1016/j.techsoc.2022.101933
  90. Wang, X., Wang, Y., & Zhou, K. (2024). The Impact of Energy Poverty Alleviation on Carbon Emissions in Countries along the Belt and Road Initiative. Sustainability, 16(11), 4681. https://www.mdpi.com/2071-1050/16/11/4681
  91. Wang, Y., Qiao, G., Ahmad, M., & Yang, D. (2023). Modeling the Impact of Fiscal Decentralization on Energy Poverty: Do Energy Efficiency and Technological Innovation Matter? International Journal of Environmental Research and Public Health, 20(5), 4360. https://doi.org/10.3390/ijerph20054360
  92. Westerlund, J. (2007). Testing for Error Correction in Panel Data. Oxford Bulletin of Economics and statistics, 69(6), 709-748. https://doi.org/10.1111/j.1468-0084.2007.00477.x
  93. Westerlund, J., & Edgerton, D. L. (2007). A panel bootstrap cointegration test. Economics Letters, 97(3), 185-190. https://doi.org/10.1016/j.econlet.2007.03.003
  94. Westerlund, J., & Edgerton, D. L. (2008). A simple test for cointegration in dependent panels with structural breaks. Oxford Bulletin of Economics and statistics, 70(5), 665-704. https://doi.org/10.1111/j.1468-0084.2008.00513.x
  95. Wollburg, P. (2023). Ending Extreme Poverty Has a Negligible Impact on Global Greenhouse Gas Emissions. Nature, 623(7989), 982-986. https://doi.org/10.1038/s41586-023-06679-0
  96. Wynsberghe, A. v. (2021). Sustainable AI: AI for Sustainability and the Sustainability of AI. Ai and Ethics, 1(3), 213-218. https://doi.org/10.1007/s43681-021-00043-6
  97. Xia, S., Yu, Y., Qian, X., & Xu, X. (2022). Spatiotemporal Interaction and Socioeconomic Determinants of Rural Energy Poverty in China. International Journal of Environmental Research and Public Health, 19(17), 10851. https://doi.org/10.3390/ijerph191710851
  98. Xiao, Y., Wu, H., Wang, G., & Hong, M. (2021). Mapping the Worldwide Trends on Energy Poverty Research: A Bibliometric Analysis (1999–2019). International Journal of Environmental Research and Public Health, 18(4), 1764. https://doi.org/10.3390/ijerph18041764
  99. Xiong, J., Zhang, Y., & Mao, Z. (2025). A Study on the Impact of Green Bonds on Corporate ESG Performance. GBP Proceedings. https://www.gbspress.com/index.php/GBPPS/article/view/174
  100. Xu, W., Xie, B., Lou, B., Wang, W., & Wang, Y. (2022). Assessing the Effect of Energy Poverty on the Mental and Physical Health in China—Evidence From China Family Panel Studies. Frontiers in Energy Research, 10. https://doi.org/10.3389/fenrg.2022.944415
  101. Yahong, W., Ping, C. Y., Khan, S., & Chandio, A. A. (2022). How Does Clean Fuels and Technologies-Based Energy Poverty Affect Carbon Emissions? New Evidence From Eighteen Developing Countries. https://doi.org/10.21203/rs.3.rs-1887294/v1
  102. Yi, X., & Qamruzzaman, M. (2024). Unlocking environmental harmony through export earnings: exploring the impact of remittances and infrastructure growth. Frontiers in Environmental Science, 12, 1388056. https://doi.org/10.3389/fenvs.2024.1388056
  103. Yingjun, Z., Jahan, S., & Qamruzzaman, M. (2024). Technological Innovation, Trade Openness, Natural Resources, and Environmental Sustainability in Egypt and Turkey: Evidence from Load Capacity Factor and Inverted Load Capacity Factor with Fourier Functions. Sustainability (2071-1050), 16(19). https://doi.org/10.3390/su16198643
  104. Yudiartono, Y., Windarta, J., & Adiarso, A. (2023). Sustainable Long-Term Energy Supply and Demand: The Gradual Transition to a New and Renewable Energy System in Indonesia by 2050. International Journal of Renewable Energy Development, 12(2), 419-429. https://doi.org/10.14710/ijred.2023.50361
  105. Zang, D., Li, F., & Chandio, A. A. (2021). Factors of Energy Poverty: Evidence from Tibet, China. Sustainability, 13(17), 9738. https://www.mdpi.com/2071-1050/13/17/9738
  106. Zhang, J., Liu, Y., Saqib, N., & Waqas Kamran, H. (2022). An Empirical Study on the Impact of Energy Poverty on Carbon Intensity of the Construction Industry: Moderating Role of Technological Innovation [Hypothesis and Theory]. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.929939
  107. Zhang, P., & Yu, Y. (2024). How does regional technological innovation affect energy poverty? The role of industrial structure distortion. Energy, 291, 130387. https://doi.org/10.1016/j.energy.2024.130387
  108. Zhao, J., Jiang, Q., Dong, X., & Dong, K. (2021). Assessing energy poverty and its effect on CO2 emissions: The case of China. Energy Economics, 97, 105191. https://doi.org/10.1016/j.eneco.2021.105191

Last update:

No citation recorded.

Last update: 2025-10-23 18:48:38

No citation recorded.