skip to main content

View PDF Download fulltext

Effect of gurney flaps on the performance of a vertical axis wind turbine under icing condition

Power Mechanical Engineering, School of Energy and Power Engineering, University of Shanghai for Science and Technology, China

Received: 25 Jul 2025; Revised: 16 Oct 2025; Accepted: 6 Dec 2025; Available online: 26 Dec 2025; Published: 1 Jan 2026.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2026 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

To investigate the operational characteristics of a vertical-axis wind turbine equipped with Gurney flap blades in icy conditions, the study employs the pitching and sinking movements of an individual blade to replicate the cyclic oscillations experienced by a vertical-axis wind turbine (VAWT) blade during rotation at a temperature of 265K. The aim is to analyze the icing pattern and assess the performance of the wind turbine with varying tip-speed ratios of Gurney flap blades. The findings indicate that as icing time increases, the vertical axis wind turbine experiences a significant decrease in output power. This is attributed to the formation of a leading-edge ice angle, which generates a leading-edge vortex and exacerbates flow separation, consequently reducing the wind turbine's torque coefficient. After 6 minutes of icing, the power coefficient decreases by up to 81%. Additionally, the Gurney flap blades develop ice accumulation on the flaps, which reduces their effectiveness in preventing flow separation. Specifically, when the tip speed ratio of the blade is 3.5, it is observed that the icing on the Gurney flap blades is less effective after 6 minutes compared to that on the VAWT. At a tip speed ratio of 3.5, the vertical axis wind turbine (VAWT) with Gurney flaps ceases to function properly after 6 minutes, leading to a decrease in output power to -0.012. However, within the tip speed range of 1.5 to 3, the Gurney flaps continue to serve as a means of flow control. They enhance the wind turbine's resistance to loss in icing conditions when compared to the original airfoil vertical axis wind turbine under similar operational circumstances.

Keywords: vertical axis wind turbine; Gurney flap icing; dynamic icing; numerical calculation

Article Metrics:

  1. Balduzzi, F., Bianchini, A., Ferrara, G., et al. (2016). Dimensionless numbers for the assessment of mesh and timestep requirements in CFD simulations of Darrieus wind turbines. Energy, 97, 246–261. https://doi.org/10.1016/j.energy.2015.12.111
  2. Bianchini, A., Balduzzi, F., Bachant, P., et al. (2017). Effectiveness of two-dimensional CFD simulations for Darrieus VAWTs: A combined numerical and experimental assessment. Energy Conversion and Management, 136, 318–328. https://doi.org/10.1016/j.enconman.2017.01.026
  3. Bianchini, A., Balduzzi, F., Di Rosa, D., et al. (2019). On the use of Gurney flaps for the aerodynamic performance augmentation of Darrieus wind turbines. Energy Conversion and Management, 184, 402–415. https://doi.org/10.1016/j.enconman.2019.01.068
  4. Bianchini, A., Balduzzi, F., Ferrari, L., et al. (2019). On the use of Gurney flaps for the aerodynamic performance enhancement of airfoils and wings. Energy Conversion and Management, 183, 149–164. https://doi.org/10.1016/j.enconman.2018.12.038
  5. Bianchini, A., Balduzzi, F., Ferrari, L., et al. (2019). On the use of Gurney flaps for the aerodynamic performance enhancement of airfoils and wings. Energy Conversion and Management, 183, 149–164. https://doi.org/10.1016/j.enconman.2018.12.038
  6. Bragg, M. B., Broeren, A. P., & Blumenthal, L. A. (2005). Iced-airfoil aerodynamics. Progress in Aerospace Sciences, 41(5), 323–418. https://doi.org/10.1016/j.paerosci.2005.07.001
  7. Brunner, C. E., Kiefer, J., & Hultmark, M. (2022). Comparison of dynamic stall on an airfoil undergoing sinusoidal and VAWT-shaped pitch motions. Journal of Physics: Conference Series, 2265(3), 032006. https://doi.org/10.1088/1742-6596/2265/3/032006
  8. Cole, J. A., Vieira, B. A. O., Coder, J. G., Premi, A., & Maughmer, M. D. (2013). An experimental investigation into the effect of Gurney flaps on various airfoils. Journal of Aircraft, 50(4), 1287–1294. https://doi.org/10.2514/1.C032203
  9. Daróczy, L., Janiga, G., Petrasch, K., Webner, M., & Thévenin, D. (2015). Comparative analysis of turbulence models for the aerodynamic simulation of H-Darrieus rotors. Energy, 90, 680–690. https://doi.org/10.1016/j.energy.2015.07.102
  10. Feng, F., Li, S., Li, Y., et al. (2012). Numerical simulation on the aerodynamic effects of blade icing on small scale straight-bladed VAWT. Physics Procedia, 24, 774–780. https://doi.org/10.1016/j.phpro.2012.02.115
  11. Fouladi, H., Aliaga, C. N., & Habashi, W. G. (2015). Quasi-unsteady icing simulation of an oscillating airfoil. In 7th AIAA Atmospheric and Space Environments Conference (AIAA 2015-3020). https://doi.org/10.2514/6.2015-3020
  12. Fu, Z., & Shi, L. (2016). Aerodynamic performance of wind turbine airfoil under icing condition. Acta Energiae Solaris Sinica, 37(3), 609–616. (In Chinese). https://www.cnki.net
  13. Gao, L., & Hong, J. (2021). Wind turbine performance in natural icing environments: A field characterization. Cold Regions Science and Technology, 181, 103193. https://doi.org/10.1016/j.coldregions.2020.103193
  14. Gao, L., Hong, J., & Hu, H. (2021). Wind turbine icing characteristics and icing-induced power losses to utility-scale wind turbines. Proceedings of the National Academy of Sciences of the United States of America, 118(41), e2111461118. https://doi.org/10.1073/pnas.2111461118
  15. Islam, M. R., Mekhilef, S., & Saidur, R. (2013). Progress and recent trends of wind energy technology. Renewable and Sustainable Energy Reviews, 21, 456–468. https://doi.org/10.1016/j.rser.2013.01.007
  16. Jang, C. S., Ross, J. C., & Cummings, R. M. (1992). Computational evaluation of an airfoil with a Gurney flap. In AIAA 30th Aerospace Sciences Meeting and Exhibit (AIAA Paper 92-2708). Retrieved from https://arc.aiaa.org
  17. Jang, C. S., Ross, J. C., & Cummings, R. M. (1992). Computational evaluation of an airfoil with a Gurney flap. In AIAA 30th Aerospace Sciences Meeting and Exhibit (AIAA Paper 92-2708). Retrieved from https://arc.aiaa.org
  18. Li, S., & Li, Y. (2011). Numerical simulation on icing of a blade aerofoil for vertical axis wind turbines. Journal of Chinese Society of Power Engineering, 31(3), 214–219. (In Chinese). https://www.researchgate.net/publication/253086214
  19. Li, Y., Wang, J., & Zhang, P. (2002). Effects of Gurney flaps on a NACA0012 airfoil. Flow, Turbulence and Combustion, 68(1), 27–39. https://doi.org/10.1023/A:1015679408150
  20. Lynch, F. T., & Khodadoust, A. (2001). Effects of ice accretions on aircraft aerodynamics. Progress in Aerospace Sciences, 37(8), 669–767. https://doi.org/10.1016/S0376-0421(01)00018-5
  21. Manatbayev, R., Baizhuma, Z., Bolegenova, S., et al. (2021). Numerical simulations on static vertical axis wind turbine blade icing. Renewable Energy, 170, 997–1007. https://doi.org/10.1016/j.renene.2021.02.023
  22. Martini, F., Contreras Montoya, L. T., & Ilinca, A. (2021). Review of wind turbine icing modelling approaches. Energies, 14(16), 5207. https://doi.org/10.3390/en14165207
  23. Mayda, E. A., Van Dam, C. P., & Nakafuji, D. (2005). Computational investigation of finite width microtabs for aerodynamic load control. In 43rd AIAA Aerospace Sciences Meeting and Exhibit. https://doi.org/10.2514/6.2005-1185
  24. McCroskey, W. J. (1981). The phenomenon of dynamic stall (NASA Technical Memorandum 81264). Washington, DC: NASA. Retrieved from https://ntrs.nasa.gov
  25. Rahman, S. O., Azfar, J., Irfan, K. T., et al. (2022). Experimental and numerical evaluation of performance of a variable pitch vertical axis wind turbine. Journal of Energy Resources Technology, 144(6), 061303. https://doi.org/10.1115/1.4051896
  26. Reinert, T., Flemming, R. J., Narducci, R., & Aubert, R. J. (2011). Oscillating airfoil icing tests in the NASA Glenn Research Center icing research tunnel. SAE Technical Paper 2011-38-0016. https://doi.org/10.4271/2011-38-0016
  27. Rezaeiha, A., Kalkman, I., & Blocken, B. (2018). Towards accurate CFD simulations of vertical axis wind turbines at different tip speed ratios and solidities: Guidelines for azimuthal increment, domain size and convergence. Energy Conversion and Management, 156, 301–316. https://doi.org/10.1016/j.enconman.2017.11.026
  28. Rezaeiha, A., Montazeri, H., & Blocken, B. (2018). Towards optimal aerodynamic design of vertical axis wind turbines: Impact of solidity and number of blades. Energy, 165, 1129–1148. https://doi.org/10.1016/j.energy.2018.09.192
  29. Rezaeiha, A., Montazeri, H., & Blocken, B. (2019). On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines. Energy, 180, 838–857. https://doi.org/10.1016/j.energy.2019.05.053
  30. Son, C., & Kim, T. (2020). Development of an icing simulation code for rotating wind turbines. Journal of Wind Engineering and Industrial Aerodynamics, 203, 104239. https://doi.org/10.1016/j.jweia.2020.104239
  31. Syawitri, T. P., Yao, Y.-F., Yao, J., et al. (2020). The effect of Gurney flap on flow characteristics of vertical axis wind turbine. International Journal of Modern Physics B, 34(14–16), 2040107. https://doi.org/10.1142/S0217979220401074
  32. Tahir, S. A. R., & Virk, M. S. (2022). Vertical axis wind turbine operation in icing conditions: A review study. Wind Engineering, 46(4), 1331–1340. https://doi.org/10.1177/0309524X211061828
  33. Tescione, G., Ragni, D., He, C., Simão Ferreira, C., & van Bussel, G. J. W. (2014). Near wake flow analysis of a vertical axis wind turbine by stereoscopic particle image velocimetry. Renewable Energy, 70, 47–61. https://doi.org/10.1016/j.renene.2014.02.042
  34. Tescione, G., Ragni, D., He, C., Simão Ferreira, C., & van Bussel, G. J. W. (2014). PIV-based analysis of 2D and 3D flow phenomena of vertical axis wind turbine aerodynamics. In 32nd ASME Wind Energy Symposium (AIAA 2014-1080). Retrieved from https://arc.aiaa.org
  35. Tsai, H. C., & Colonius, T. (2016). Coriolis effect on dynamic stall in a vertical axis wind turbine. AIAA Journal, 54(1), 216–226. https://doi.org/10.2514/1.J054199
  36. Wang, J. J., Li, Y. C., & Choi, K. S. (2008). Gurney flap—Lift enhancement, mechanisms and applications. Progress in Aerospace Sciences, 44(1), 22–47. https://doi.org/10.1016/j.paerosci.2007.10.001
  37. Wang, Z., & Zhuang, M. (2017). Leading-edge serrations for performance improvement on a vertical-axis wind turbine at low tip-speed-ratios. Applied Energy, 208, 1184–1197. https://doi.org/10.1016/j.apenergy.2017.09.012
  38. Xue, W., Luo, G., Zhang, X., et al. (2021). High-resolution numerical simulation of the performance of vertical axis wind turbines in urban area: Part I, wind turbines on the side of single building. Renewable Energy, 177, 461–474. https://doi.org/10.1016/j.renene.2021.04.071
  39. Zhang, P., Yang, T., & Lu, X. (2011). Influence of icing pattern on aerodynamic performance of wind turbine airfoils. Journal of Chinese Society of Power Engineering, 31(12), 955–973. (In Chinese). https://www.researchgate.net/publication/289543767
  40. Zhu, H. T., Hao, W. X., Li, C., et al. (2020). Effect of geometry parameters of Gurney flap on the aerodynamic performance of vertical axis wind turbine. Journal of Engineering for Thermal Energy and Power, 35(10), 124–130. https://doi.org/10.16146/j.cnki.rndlgc.2020.10.018

Last update:

No citation recorded.

Last update: 2026-01-11 20:40:15

No citation recorded.