skip to main content

Renewable energy from irrigation infrastructure: Experimental insights from a Michell-Banki micro-hydropower prototype in a Colombian irrigation district

Programa de ingeniería agrícola, Facultad de ingeniería, Universidad Surcolombiana, Neiva, Huila, Colombia

Received: 11 Aug 2025; Revised: 28 Sep 2025; Accepted: 7 Oct 2025; Available online: 25 Oct 2025; Published: 1 Nov 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

This study presents the experimental characterization of a Michell–Banki micro-hydropower prototype implemented in the Túnel del Río Neiva irrigation district (Colombia), aimed at promoting distributed generation in off-grid rural areas. The system was designed for a nominal flow of 0.24 m³/s and a net head of 18 meters, capable of delivering up to 20 kW of electrical power. The turbine-generator performance was evaluated under progressive load and variable flow conditions using direct measurements of voltage, current, power, and rotor speed. A custom-built experimental resistor bank (ERB) was implemented to simulate real load scenarios, enabling the analysis of electrical response as the number of luminaires increased. The results revealed a strong linear correlation between rotor speed and generated voltage (R² = 0.9953), validating the electromechanical design. However, a saturation trend in power output was observed beyond the tenth luminaire, attributed to reduced rotor speed under load. Polynomial regression models were developed to describe the influence of flow rate on speed, voltage, and power. The cubic models for voltage and power achieved coefficients of determination above 97%, with RMSE values of 5.41 V and 375.47 W, respectively. Residual plots confirmed the validity of the models and highlighted the importance of operating close to the nominal flow rate to ensure optimal performance. This work demonstrates the feasibility of using Michell–Banki turbines for rural electrification through irrigation infrastructure. The methodology and findings provide valuable insights for future implementations, emphasizing the need for hydraulic regulation to maintain system efficiency under variable load conditions.

Fulltext View|Download
Keywords: Distributed generation; Energy saturation; Experimental correlation; Polynomial modeling.

Article Metrics:

  1. Ardila Cerquera, M. S., Ávila Parada, M. M., Martínez Palmeth, L. H., Ardila Marín, J. G., & Acosta Vargas, J. C. (2025). Evaluation of the influence of the number of blades on a Michell Banki turbine on the power generated under given flow and head conditions. EUREKA: Physics and Engineering, (3), 27-35. https://doi.org/10.21303/2461-4262.2025.003702
  2. Assefa, E. Y., & Tesfay, A. H. (2025). Effect of Blade Profile on Flow Characteristics and Efficiency of Cross-Flow Turbines. Energies, 18(12). https://doi.org/10.3390/en18123203
  3. Balacco, G. (2018). Performance prediction of a pump as turbine: Sensitivity analysis based on artificial neural networks and evolutionary polynomial regression. Energies, 11(12), 3497. https://doi.org/10.3390/en11123497
  4. Bazzana, D., Zaitchik, B., & Gilioli, G. (2020). Impact of water and energy infrastructure on local well-being: an agent-based analysis of the water-energy-food nexus. Structural Change and Economic Dynamics, 55, 165–176. https://doi.org/10.1016/j.strueco.2020.08.003
  5. Chel, A., & Kaushik, G. (2011). Renewable energy for sustainable agriculture. Agronomy for Sustainable Development, 31(1), 91–118. https://doi.org/10.1051/agro/2010029
  6. Derakhshan, S., & Nourbakhsh, A. (2008). Experimental study of characteristic curves of centrifugal pumps working as turbines in different specific speeds. Experimental Thermal and Fluid Science, 32(3), 800–807. https://doi.org/10.1016/j.expthermflusci.2007.10.004
  7. Elbatran, A. H., Yaakob, O. B., Ahmed, Y. M., & Shehata, A. S. (2018). Numerical and experimental investigations on efficient design and performance of hydrokinetic Banki cross flow turbine for rural areas. Ocean Engineering, 159(May), 437–456. https://doi.org/10.1016/j.oceaneng.2018.04.042
  8. Erdiwansyah, Mahidin, Zaki, M., Asr, G., Muhibbuddin, & Jalaluddin. (2021). A review of renewable energy mini-grid systems in the non-interconnected rural areas: A case study. Journal of Hunan University (Natural Science), 48(1), 133–151. http://www.jonuns.com/index.php/journal/article/view/492
  9. Guo, B., Bacha, S., Alamir, M., & Mohamed, A. (2018). Variable speed micro-hydro power generation system: Review and Experimental results. SYMPOSIUM DE GENIE ELECTRIQUE (SGE 2018), 3–5. https://hal.science/hal-02981922v1
  10. Halder, P., Doppalapudi, A. T., Azad, A. K., & Khan, M. M. K. (2020). Efficient hydroenergy conversion technologies, challenges, and policy implication. In Advances in Clean Energy Technologies. Elsevier Inc. https://doi.org/10.1016/B978-0-12-821221-9.00007-4
  11. Ibañez, L., Escobar, L., Hidalgo, A., Gordón, C., & Cumbajín, M. (2020). Michell-Banki a Promise Turbine for Pico-Hydro in Water Irrigation Channel Lenin. Applied Technologies, First International Conference, ICAT 2019, 305–317. https://doi.org/10.1007/978-3-030-42531-9
  12. Kaygusuz, K. (2011). Energy services and energy poverty for sustainable rural development. Renewable and Sustainable Energy Reviews, 15(2), 936–947. https://doi.org/10.1016/j.rser.2010.11.003
  13. Lamesgin, H. B., & Ali, A. N. (2024). Optimization of screw turbine design parameters to improve the power output and efficiency of micro-hydropower generation. Cogent Engineering, 11(1). https://doi.org/10.1080/23311916.2024.2327906
  14. López-González, A., Domenech, B., Gómez-Hernández, D., & Ferrer-Martí, L. (2017). Renewable microgrid projects for autonomous small-scale electrification in Andean countries. Renewable and Sustainable Energy Reviews, 79(September 2016), 1255–1265. https://doi.org/10.1016/j.rser.2017.05.203
  15. Macias Rodas, C. A., Lopez de Paz, P., Lastres Danguillecourt, O., & Ibáñez Duharte, G. (2022). Analysis and optimization to a test bench for Micro-hydro-generation. Energy Reports, 8, 321-328. https://doi.org/10.1016/j.egyr.2022.10.292
  16. Mendonça, P. E., Trevisan, K., da Silva, H. T., Freitas, L. F., Santos, B. R., Camps, I., & Ferreira, T. A. A. (2025). Use of water supply for microgeneration of electricity in buildings and residential. OBSERVATÓRIO DE LA ECONOMÍA LATINOAMERICANA, 23(5), e10106. https://doi.org/10.55905/oelv23n5-184
  17. Mereke, N. B., Ancha, V. R., & Hendrick, P. (2024). Numerical modeling and CFD simulation of diffuser augmented dual vertical axis hydrokinetic Banki-Michell turbine. Heliyon, 10(5). https://doi.org/10.1016/j.heliyon.2024.e26970
  18. Mrope, H. A., Chande Jande, Y. A., & Kivevele, T. T. (2021). A review on computational fluid dynamics applications in the design and optimization of crossflow hydro turbines. Journal of Renewable Energy, 2021(1), 5570848. https://doi.org/10.1155/2021/5570848
  19. Niyonzima, J. B., & Hendrick, P. (2021). Lab performance testing of a small Banki-Michell hydraulic turbine for remote applications. Journal of Renewable Energies, 24, 244–260. https://doi.org/10.54966/jreen.v24i2.984
  20. Obaideen, K., Yousef, B. A. A., AlMallahi, M. N., Tan, Y. C., Mahmoud, M., Jaber, H., & Ramadan, M. (2022). An overview of smart irrigation systems using IoT. Energy Nexus, 7(July), 100124. https://doi.org/10.1016/j.nexus.2022.100124
  21. Perez-Rodriguez, A. J., Sierra-Del Rio, J., Grisales-Noreña, L. F., & Galvis, S. (2021). Optimization of the efficiency of a michell–banki turbine through the variation of its geometrical parameters using a pso algorith. WSEAS Transactions on Applied and Theoretical Mechanics, 16, 37–46. https://doi.org/10.37394/232011.2021.16.5
  22. Popescu, D., & Duinea, A. (2013). Study of Centrifugal Pump Operating as Turbine in Small Hydropower Plants Faculty of Electrical Engineering. In Recent Researches in Electric Power and Energy Systems (pp. 285–288)
  23. Rahman, M. F. A., Kamal, N. A., Abdullah, J., Quaranta, E., & Shin, S. (2025). Unlocking the potential of micro-hydropower in water distribution networks: a comprehensive systematic review for Malaysia’s sustainable energy future. Discover Sustainability, 6(1), 56. https://doi.org/10.1007/s43621-025-00818-5
  24. Ramírez Ramírez, L. M., & Cerquera Valderrama, C. (2020). Estudio del potencial energético de un canal ubicado en el distrito de riego USOIGUA municipio de Campoalegre-Huila, para la generación de energía eléctrica mediante la implementación de una turbina [Universidad Surcolombiana]. http://repositoriousco.co:8080/jspui/handle/123456789/5707
  25. Reyna, T., Irazusta, B., Reyna, S., Labaque, M., & Riha, C. (2019). Development of Micro Hydro Turbines As Renewable Energy Applications for Educational Purposes. Proceedings of the IAHR World Congress, 5949–5959. https://doi.org/10.3850/38WC092019-1426
  26. Reyna, T., Reyna, S., Lábaque, M., Riha, C., & Groso, F. (2016). Applications of Small Scale Renewable Energy. Journal of Business and Economics, 7(2), 258–266. https://doi.org/10.15341/jbe(2155-7950)/02.07.2016/008
  27. Romero-Menco, F., Pineda-Aguirre, J., Velásquez, L., Rubio-Clemente, A., & Chica, E. (2024). Effects of the Nozzle Configuration with and without an Internal Guide Vane on the Efficiency in Cross-Flow Small Hydro Turbines. Processes, 12(5), 938. https://doi.org/10.3390/pr12050938
  28. Sammartano, V., Aricò, C., Carravetta, A., Fecarotta, O., & Tucciarelli, T. (2013). Banki-Michell optimal design by computational fluid dynamics testing and hydrodynamic analysis. Energies, 6(5), 2362–2385. https://doi.org/10.3390/en6052362
  29. Sammartano, V., Filianoti, P., Sinagra, M., Tucciarelli, T., Scelba, G., & Morreale, G. (2016). Coupled Hydraulic and Electronic Regulation for Banki Turbines. Procedia Engineering, 162, 419–425. https://doi.org/10.1016/j.proeng.2016.11.083
  30. Siavash, N. K., Ghobadian, B., Najafi, G., Rohani, A., Tavakoli, T., Mahmoodi, E., & Mamat, R. (2021). Prediction of power generation and rotor angular speed of a small wind turbine equipped to a controllable duct using artificial neural network and multiple linear regression. Environmental research, 196, 110434. https://doi.org/10.1016/j.envres.2020.110434
  31. Sierra-Moreno, D., Romero-Menco, F., Velásquez-García, L. I., Rubio-Clemente, A., & Chica-Arrieta, E. (2024). Recomendaciones para la realización y análisis de pruebas experimentales en turbinas hidráulicas tipo Michell-Banki. Revista UIS Ingenierías, 23(2), 47-70. https://doi.org/10.18273/revuin.v23n2-2024004
  32. Sinagra, M., Sammartano, V., Aricò, C., Collura, A., & Tucciarelli, T. (2014). Cross-Flow turbine design for variable operating conditions. Procedia Engineering, 70, 1539–1548. https://doi.org/10.1016/j.proeng.2014.02.170
  33. Sotto Capera, F., Ardila Marín, J. G., & Cerquera Sandoval, C. (2023). Numerical Study of the Opening Angle Incidence in Michell-Banki Turbine’s Performance without Guide Blades. International Journal of Engineering Research in Africa, 67, 101–122. https://doi.org/10.4028/p-EO6We7
  34. Sotto Capera, F., Cerquera Sandoval, C., Acosta Vargas, J. C., & Ardila Marín, J. G. (2026). Fluid handling and civil structure of a mini- hydroelectric power plant project in an irrigation district in Colombia. REM - International Engineering Journal, 79(1), 1–14. http://dx.doi.org/10.1590/0370-44672025790042
  35. Sritram, P., & Suntivarakorn, R. (2021). The efficiency comparison of hydro turbines for micro power plant from free vortex. Energies, 14(23). https://doi.org/10.3390/en14237961
  36. Tarimer, I., & Yuzer, E. O. (2011). Designing of a permanent magnet and directly driven synchronous generator for low speed turbines. Elektronika Ir Elektrotechnika, 6(6), 15–18. https://doi.org/10.5755/j01.eee.112.6.436
  37. Tesfay, A. H., Weldemariam, S. A., & Gebrelibanos, K. G. (2025). Design and Development of Crossflow Turbine for Off-Grid Electrification. Energies, 18(19), 5108. https://doi.org/10.3390/en18195108
  38. Vasić, M. P., Matejic, M., & Blagojevic, M. (2018). Influence Analysis of Selected Turbine to Working Influence Analysis of Selected Turbine to Working Characteristics of Small Hydro Power Plants. Machine Design, 10(1), 11–16. https://doi.org/10.24867/MD.10.2018.1.11-16
  39. Verde, A., Lastres, O., Hernández, G., Ibañez, G., Verea, L., & Sebastian, P. J. (2018). A new method for characterization of small capacity wind turbines with permanent magnet synchronous generator: An experimental study. Heliyon, 4(8). https://doi.org/10.1016/j.heliyon.2018.e00732
  40. Wendimu, A., Yoseph, T., & Ayalew, T. (2023). An overview of the role of irrigation in the attainment of sustainable development goals through hunger and poverty alleviation in Ethiopia. International Journal of Innovative Research and Scientific Studies, 6(4), 980–993. https://doi.org/10.53894/ijirss.v6i4.2215
  41. Wu, R. C., Tseng, Y. W., & Chen, C. Y. (2018). Estimating parameters of the induction machine by the polynomial regression. Applied Sciences, 8(7), 1073. https://doi.org/10.3390/app8071073

Last update:

No citation recorded.

Last update: 2025-10-22 16:09:07

No citation recorded.