skip to main content

View PDF Download fulltext

Future wind speed and energy potential in Togo for the period 2021-2040: Projections from CORDEX-Africa models

1Department of physics and chemistry, Ecole Normale Supérieure of Atakpamé, Togo

2Laboratory of Applied Hydrology, National Institute of Water, University of Abomey-Calavi, Benin

3Laboratory of Solar Energy, University of Lomé, Togo

4 Laboratoire d’énergies thermique et renouvelables, Université de Ouagadougou, Burkina Faso

5 Laboratory of Thermal and Renewable Energies, Department of Physics, Unit of Training and Research on Exact and Applied Sciences, BP 7021, University Joseph KI- ZERBO, Ouagadougou, Burkina Faso

View all affiliations
Received: 15 Aug 2025; Revised: 17 Oct 2025; Accepted: 18 Nov 2025; Available online: 23 Nov 2025; Published: 1 Jan 2026.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2026 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

This study assesses the wind energy potential across Togo by analyzing historical (2001–2020) and future (2021–2040) wind regimes using MERRA-2 reanalysis data and six bias-corrected CORDEX-Africa regional climate models (MIROC, MPI, ICHEC, NOAA, NCC, and IPSL). A Python-based analytical framework was developed to automate data compilation, visualization, and multi-model statistical processing, ensuring reproducibility and computational efficiency. Model performance was evaluated against ground-based observations using a multi-metric validation approach combining R², NSE, and RMSE. Results identify MERRA-2 (R² = 0.96, NSE = 0.95, RMSE = 0.35) and the RCMs MIROC, MPI, and ICHEC (R²=0.93–0.95, NSE=0.92–0.94, RMSE<0.45) as the most reliable sources for future wind projections. Seasonal and spatial analyses reveal pronounced heterogeneity across the country. During the rainy season, wind speeds in northern Togo reach 3.8–4.3 m/s, while the southern coastal zone maintains stable year-round winds ranging from 3.9 to 4.5 m/s due to the influence of persistent sea breezes. Future projections for 2021–2040 show an increase in wind speeds of 4–8 %, corresponding to wind power density enhancements of 9–30 %. Peak power density values are projected to reach approximately 52 W/m² in the north, 47 W/m² in the center, and 49 W/m² along the coast. Overall, these findings provide a robust scientific basis for region-specific energy strategies, including the development of hybrid wind–solar systems, targeted coastal installations, and optimized siting of northern wind farms. The results further highlight the potential of wind energy to support national electrification efforts and emerging green hydrogen initiatives, contributing to sustainable development and energy security in Togo.

Keywords: Togo; wind energy potential; MERRA-2; CORDEX-Africa; Regional Climate Models; bias correction; model evaluation; seasonal wind variability; wind power

Article Metrics:

  1. Abdraman, M., Tahir, A., Lissouck, D., Kazet, M., & Mouangue, R. (2016). Wind resource assessment in the city of N’djamena in Chad. International Journal of Renewable Energy Research, 6, 1022–1036. https://doi.org/10.20508/ijrer.v6i3.4066.g6885
  2. Abolude, A. T., Zhou, W., & Akinsanola, A. A. (2020). Evaluation and projections of wind power resources over China for the energy industry using CMIP5 models. Energies, 13, 2417. https://doi.org/10.3390/en13102417
  3. Akinsanola AA, Ogunjobi KO, Abolude AT, Sarris SC, Ladipo KO (2017) Assessment of Wind Energy Potential for Small Communities in South-South Nigeria: Case Study of Koluama, Bayelsa State. J Fundam Renewable Energy Appl 7: 227. https://doi.org/10.4172/20904541.1000227
  4. Allouhi, A., Zamzoum, O., Islam, M. R., et al. (2017). Evaluation of wind energy potential in Morocco’s coastal regions. Renewable and Sustainable Energy Reviews, 72, 311–324. https://doi.org/10.1016/j.rser.2017.01.047
  5. Arreyndip, N. A., Joseph, E., & David, A. (2016). Wind energy potential assessment of Cameroon’s coastal regions for the installation of an onshore wind farm. Heliyon, 2, e00187. https://doi.org/10.1016/j.heliyon.2016.e00187
  6. Asfaw, A., Simane, B., Hassen, A., & Bantider, A. (2018). Variability and Time Series Trend Analysis of Rainfall and Temperature in Northcentral Ethiopia: A Case Study in Woleka Sub-Basin. Weather and Climate Extremes, 19, 29–41. https://doi.org/10.1016/j.wace.2017.12.002
  7. Ayodele, T. R., Jimoh, A. A., Munda, J. L., & Agee, J. T. (2012). Wind distribution and capacity factor estimation for wind turbines in the coastal region of South Africa. Energy Conversion and Management, 64, 614–625. https://doi.org/10.1016/j.enconman.2012.06.007
  8. Batablinle, L., Lawin, E. and Agnide, S. (2018) Africa-Cordex Simulations Projection of Future Temperature, Precipitation, Frequency and Intensity Indices Over Mono Basin in West Africa. Journal of Earth Science & Climatic Change, 9, 1-12. https://doi.org/10.4172/2157-7617.1000490
  9. Batablinlè, L., Kongnine, D. M., Panafeïkow, P., Kossi, T., Yendoubé, L., Zakaria, D., Lawin, A. E., & Banna, M. (2025). Modeling and optimization of hybrid hydro-solar-wind systems for green hydrogen production in Togo. International Journal of Renewable Energy Development, 14(4), 813-828. https://doi.org/10.61435/ijred.2025.61136
  10. Bandoc, G., Prãvãlie, R., Cristian, P., & Mircea, D. (2018). Spatial assessment of wind power potential at global scale. A geographical approach. Journal of Cleaner Production, 200, 1065–1086. https://doi.org/10.1016/j.jclepro.2018.07.288
  11. Breslow, P. B., & Sailor, D. J. (2002). Vulnerability of wind power resources to climate change in the continental United States. Renewable Energy, 27, 585–598. https://doi.org/10.1016/S0960-1481(01)00110-0
  12. Boudia, S. M., Benmansour, A., & Hellal, M. A. T. (2016). Wind resource assessment in Algeria. Sustainable Cities and Society, 22, 171–183. https://doi.org/10.1016/j.scs.2016.02.010
  13. Célestin, M., Emmanuel, L., Batablinlè, L., & Marc, N. (2019). Spatio-Temporal Analysis of Climate Change Impact on Future Wind Power Potential in Burundi (East Africa). American Journal of Climate Change, 8, 237–262. https://doi.org/10.4236/ajcc.2019.82014
  14. Chen, Z., Li, W., Guo, J., Bao, Z., Pan, Z., & Hou, B. (2020). Projection of wind energy potential over northern China using a regional climate model. Sustainability, 12, 3979. https://doi.org/10.3390/su12103979
  15. Davy, R., Gnatiuk, N., Pettersson, L., & Bobylev, L. (2018). Climate change impacts on wind energy potential in the European domain with a focus on the Black Sea. Renewable and Sustainable Energy Reviews, 81, 1652–1659. https://doi.org/10.1016/j.rser.2017.05.253
  16. Elmabruk, A. M., Aleej, F. A., & Badii, M. M. (2014). Estimation of wind energy in Libya 2014: 5th International Renewable Energy Congress (IREC). IEEE, 1–6
  17. Lagili, H. S. A., Kiraz, A., Kassem, Y., & Gökçekuş, H. (2023). Wind and Solar Energy for Sustainable Energy Production for Family Farms in Coastal Agricultural Regions of Libya Using Measured and Multiple Satellite Datasets. Energies, 16(18), 6725. https://doi.org/10.3390/en16186725
  18. Elsner, P. (2019). Continental-scale assessment of the African offshore wind energy potential: Spatial analysis of an under-appreciated renewable energy resource. Renewable and Sustainable Energy Reviews, 104, 394–407. https://doi.org/10.1016/j.rser.2019.01.034
  19. Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016
  20. Fant, C., Schlosser, C. A., & Strzepek, K. (2016). The impact of climate change on wind and solar resources in southern Africa. Applied Energy, 161, 556–564. https://doi.org/10.1016/j.apenergy.2015.03.042
  21. George, Y. L., & David, W. W. (2008). An Adaptive Inverse-Distance Weighting Spatial Interpolation Technique. Computers & Geosciences, 34, 1044–1055. https://doi.org/10.1016/j.cageo.2007.07.010
  22. Giorgi, Giorgi, F. (2009) Simulation of Regional Climate Using a Limited Area Model Nested in a General Circulation Model. Journal of Climate, 3, 941-963. https://doi.org/10.1175/1520-0442(1990)003<0941:SORCUA>2.0.CO;2
  23. Guo, J., Huang, G., Wang, X., Xu, Y., & Li, Y. (2019). Projected changes in wind speed and its energy potential in China using a high-resolution regional climate model. Wind Energy, 23, 471–485. https://doi.org/10.1016/j.accre.2021.06.005
  24. Hueging, H., Haas, R., Born, K., Jacob, D., & Pinto, J. G. (2013). Regional changes in wind energy potential over Europe using regional climate model ensemble projections. Journal of Applied Meteorology and Climatology, 52, 903–917. https://doi.org/10.1175/JAMC-D-12-086.1
  25. IRENA. (2020). Renewable Energy Statistics 2020. International Renewable Energy Agency, Abu Dhabi
  26. Kulkarni, S., & Huang, H. P. (2014). Changes in surface wind speed over North America from CMIP5 model projections and implications for wind energy. Advances in Meteorology, 2014, 1–10. https://doi.org/10.1155/2014/292768
  27. Lamboni, B., Bazyomo, S. D., Badouc, F. D., Hounkpe, J., Kamou, H., Zakari, D., Banna, M., & Lawin, A. E. (2024). Climate, water, hydropower, wind speed and wind energy potential resources assessments using weather time series data, downscaled regional circulation models: A case study for Mono River Basin in the Gulf of Guinea region. Journal of Renewable Energy. https://doi.org/10.1016/j.renene.2024.120099
  28. Lamboni, B., Lawin, A. E. (2024). Time series analysis and forecasting of streamflow at Nangbeto dam in Mono Basin using stochastic approaches. World Journal of Advanced Research and Reviews, 23(2), 754–762. https://doi.org/10.30574/wjarr.2024.23.2.2375
  29. Lamboni, B., M'po, Y. N., & Lawin, A. E. (2024). Vulnerability of water resources to drought risk and flood prevention in Mono River Basin (Gulf of Guinea Region). International Journal of Advanced Research, 12(07), 347–359. https://dx.doi.org/10.21474/IJAR01/19062
  30. Landry, M., Ouedraogo, Y., Gagnon, Y., & Ouedraogo, A. (2017). On the wind resource mapping of Burkina Faso. International Journal of Green Energy, 14, 150–156. https://doi.org/10.1080/15435075.2016.1253571
  31. Meishen Li, & Xianguo Li. (2005). Investigation of wind characteristics and assessment of wind energy potential for Waterloo region, Canada. Energy Conversion and Management, 46, 3014–3033. DOI: 10.1016/j.enconman.2005.02.011
  32. Mentis, D., Hermann, S., Howells, M., Welsch, M., & Siyal, S. H. (2015). Assessing the technical wind energy potential in Africa: a GIS-based approach. Renewable Energy, 83, 110–125. https://doi.org/10.1016/j.renene.2015.03.072
  33. Monjid, A., Maach, A., Elghanami, D., & Hafid, A. (2015). Wind resource assessment: north and west of Morocco. 3rd International Renewable and Sustainable Energy Conference (IRSEC), IEEE, 1–6
  34. Mukasa, A. D., Mutambatsere, E., Arvanitis, Y., & Triki, T. (2013). Continental-scale assessment of the African offshore wind energy potential: Spatial analysis of an under-appreciated renewable energy resource. Working Paper 170-Development of Wind Energy in Africa, 449
  35. Olaofe, Z. O. (2018). Review of energy systems deployment and development of offshore wind energy resource map at the coastal regions of Africa. Energy, 161, 1096–1114. https://doi.org/10.1016/j.energy.2018.08.082
  36. Safari, B., & Gasore, J. (2010). A statistical investigation of wind characteristics and wind energy potential based on the Weibull and Rayleigh models in Rwanda. Renewable Energy, 35, 2874–2880. https://doi.org/10.1016/j.renene.2010.05.006
  37. Sawadogo, W., Abiodun, B. J., & Okogbue, E. C. (2019). Projected changes in wind energy potential over West Africa under the global warming of 1.5 °C and above. Theoretical and Applied Climatology, 138, 321–333. https://doi.org/10.1007/s00704-019-02853-5
  38. Sawadogo, W., et al. (2020). Current and future potential of solar and wind energy over Africa using the RegCM4 CORDEX-CORE ensemble. Climate Dynamics, 1–26. https://doi.org/10.1007/s00382-020-05350-y
  39. Soares, P. M., Lima, D. C., Semedo, A., Cabos, W., & Sein, D. V. (2019). Climate change impact on Northwestern African offshore wind energy resources. Environmental Research Letters, 14, 124065. https://doi.org/10.1088/1748-9326/ab573d
  40. Stouffer, R. J., Eyring, V., Meehl, G. A., Bony, S., Senior, C., Stevens, B., & Taylor, K. E. (2017). CMIP5 scientific gaps and recommendations for CMIP6. Bulletin of the American Meteorological Society, 98, 95–105. https://doi.org/10.1175/BAMS-D-15-00008.1
  41. Tobin, I., Vautard, R., Balog, I., Bréon, F.-M., Jerez, S., Ruti, P. M., Thais, F., Vrac, M., & Yiou, P. (2015). Assessing climate change impacts on European wind energy from ENSEMBLES high-resolution climate projections. Climatic Change, 128, 99–112. https://doi.org/10.1007/s10584-014-1291-0
  42. Udo, N. A., Oluleye, A., & Ishola, K. A. (2017). Investigation of wind power potential over some selected coastal cities in Nigeria. Innovative Energy Research, 6, 156. https://doi.org/10.4172/2090-5004.1000156
  43. Wang, X., Huang, G., & Liu, J. (2016). Twenty-first century probabilistic projections of precipitation over Ontario, Canada through a regional climate model ensemble. Climate Dynamics, 46, 3979–4001. https://doi.org/10.1007/s00382-015-2825-5
  44. Zheng, C. W., Li, X. Y., Luo, X., Chen, X., Qian, Y. H., Zhang, Z.-H., Gao, Z.-S., Du, Z.-B., Gao, Y.-B., & Chen, Y.-G. (2019). Projection of future global offshore wind energy resources using CMIP data. Atmosphere-Ocean, 57, 134–148. https://doi.org/10.1080/07055900.2018.1543984

Last update:

No citation recorded.

Last update: 2026-01-12 21:16:15

No citation recorded.