1Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam
2School of Mechanical Engineering, Vietnam Maritime University, Haiphong, Viet Nam
3Institute of Maritime, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
BibTex Citation Data :
@article{IJRED62062, author = {Du Nguyen and Lan Huong Nguyen and Duy Tan Nguyen and Nghia Chung and Thanh Hai Truong}, title = {Integrated multi-objective optimization of fuel injection and engine strategy in oxyhydrogen/producer gas-powered dual-fuel diesel engine}, journal = {International Journal of Renewable Energy Development}, volume = {15}, number = {1}, year = {2026}, keywords = {Biomass gasification; Producer gas; Sustainability; Alternative fuel; Dual-fuel engine}, abstract = { Biomass gasification has taken on a new significance as a decentralized and sustainable route of turning solid biomass into oxyhydrogen (HHO) enriched producer gas that can be employed in internal combustion engines using diesel as the pilot fuel. This dual fuel system can cut down on reliance on fossil diesel as well as improve the energy security of rural and semi-urban applications. This study examines the engine operation and emissions characteristics of the producer-gas-diesel dual-fuel engine under the main operating parameters and uses statistical optimization to reduce the emissions and still attain acceptable efficiency. Indeed, Prosopis juliflora wood gasification was conducted in a small, fixed-bed downdraft gasifier, which is only intended to be used in decentralized and experimental engines. Downdraft design was chosen because of the intrinsic effect that it provides low-tar PG, which must be supplied to internal combustion engines. The optimization findings reveal that the maximum brake mean effective pressure (BMEP) is 4.23 bar, pilot fuel injection pressure (PFIP) is 240 bar, and HHO flow rate (HHOFR) is 2.08 LPM. The predicted values of Brake Thermal Efficiency (BTE), Brake Specific Energy Consumption (BSEC), and carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NOx) emissions at these settings are estimated to be 20.71 %, 4.17 MJ/kWh, and 77.95, 79.47, and 335.99 ppm, respectively. The findings indicate that the balance between the supply of producer gas and the optimization of injection parameters can greatly enhance the sustainability and emission characteristics of the dual-fuel engine running on gaseous fuel that is produced from biomass. }, pages = {147--159} doi = {10.61435/ijred.2026.62062}, url = {https://ijred.cbiore.id/index.php/ijred/article/view/62062} }
Refworks Citation Data :
Biomass gasification has taken on a new significance as a decentralized and sustainable route of turning solid biomass into oxyhydrogen (HHO) enriched producer gas that can be employed in internal combustion engines using diesel as the pilot fuel. This dual fuel system can cut down on reliance on fossil diesel as well as improve the energy security of rural and semi-urban applications. This study examines the engine operation and emissions characteristics of the producer-gas-diesel dual-fuel engine under the main operating parameters and uses statistical optimization to reduce the emissions and still attain acceptable efficiency. Indeed, Prosopis juliflora wood gasification was conducted in a small, fixed-bed downdraft gasifier, which is only intended to be used in decentralized and experimental engines. Downdraft design was chosen because of the intrinsic effect that it provides low-tar PG, which must be supplied to internal combustion engines. The optimization findings reveal that the maximum brake mean effective pressure (BMEP) is 4.23 bar, pilot fuel injection pressure (PFIP) is 240 bar, and HHO flow rate (HHOFR) is 2.08 LPM. The predicted values of Brake Thermal Efficiency (BTE), Brake Specific Energy Consumption (BSEC), and carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NOx) emissions at these settings are estimated to be 20.71 %, 4.17 MJ/kWh, and 77.95, 79.47, and 335.99 ppm, respectively. The findings indicate that the balance between the supply of producer gas and the optimization of injection parameters can greatly enhance the sustainability and emission characteristics of the dual-fuel engine running on gaseous fuel that is produced from biomass.
Article Metrics:
Last update:
Last update: 2026-01-11 17:30:43
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
International Journal of Renewable Energy Development (ISSN:2252-4940) published by CBIORE is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.