skip to main content

View PDF Download fulltext

Integrated multi-objective optimization of fuel injection and engine strategy in oxyhydrogen/producer gas-powered dual-fuel diesel engine

1Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam

2School of Mechanical Engineering, Vietnam Maritime University, Haiphong, Viet Nam

3Institute of Maritime, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam

Received: 14 Aug 2025; Revised: 20 Oct 2025; Accepted: 5 Nov 2025; Available online: 28 Dec 2025; Published: 1 Jan 2026.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2026 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Biomass gasification has taken on a new significance as a decentralized and sustainable route of turning solid biomass into oxyhydrogen (HHO) enriched producer gas that can be employed in internal combustion engines using diesel as the pilot fuel. This dual fuel system can cut down on reliance on fossil diesel as well as improve the energy security of rural and semi-urban applications. This study examines the engine operation and emissions characteristics of the producer-gas-diesel dual-fuel engine under the main operating parameters and uses statistical optimization to reduce the emissions and still attain acceptable efficiency. Indeed, Prosopis juliflora wood gasification was conducted in a small, fixed-bed downdraft gasifier, which is only intended to be used in decentralized and experimental engines. Downdraft design was chosen because of the intrinsic effect that it provides low-tar PG, which must be supplied to internal combustion engines. The optimization findings reveal that the maximum brake mean effective pressure (BMEP) is 4.23 bar, pilot fuel injection pressure (PFIP) is 240 bar, and HHO flow rate (HHOFR) is 2.08 LPM. The predicted values of Brake Thermal Efficiency (BTE), Brake Specific Energy Consumption (BSEC), and carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NOx) emissions at these settings are estimated to be 20.71 %, 4.17 MJ/kWh, and 77.95, 79.47, and 335.99 ppm, respectively. The findings indicate that the balance between the supply of producer gas and the optimization of injection parameters can greatly enhance the sustainability and emission characteristics of the dual-fuel engine running on gaseous fuel that is produced from biomass.

Keywords: Biomass gasification; Producer gas; Sustainability; Alternative fuel; Dual-fuel engine

Article Metrics:

  1. Asadullah, M. (2014). Biomass gasification gas cleaning for downstream applications: A comparative critical review. Renewable and Sustainable Energy Reviews, 40, 118–132. https://doi.org/10.1016/j.rser.2014.07.132
  2. Bandara, W. A. R. T. W., Ranasinghe, O., Perera, P., Vlosky, R., & Kizha, A. R. (2022). Potential to use invasive plants in biomass energy production: A case study Prosopis juliflora in coastal wetlands of Sri Lanka. Trees, Forests and People, 10, 100330. https://doi.org/10.1016/j.tfp.2022.100330
  3. Barik, D., & Murugan, S. (2014). Simultaneous reduction of NOx and smoke in a dual fuel DI diesel engine. Energy Conversion and Management, 84, 217–226. https://doi.org/10.1016/j.enconman.2014.04.042
  4. Baruah, D., Kalita, P., & Moholkar, V. S. (2021). A Comprehensive Study on Utilization of Producer Gas as IC Engine Fuel. In A. . Singh, D. Kumar, & A. . Agarwal (Eds.), Alternative Fuels and Advanced Combustion Techniques as Sustainable Solutions for Internal Combustion Engines (pp. 117–147). Springer, Singapore. https://doi.org/10.1007/978-981-16-1513-9_6
  5. Bora, B. J., & Saha, U. K. (2016). Optimisation of injection timing and compression ratio of a raw biogas powered dual fuel diesel engine. Applied Thermal Engineering, 92, 111–121. https://doi.org/10.1016/j.applthermaleng.2015.08.111
  6. Bui, V. G., Bui, T. M. T., Bui, V. H., Vu, M. T., Nguyen, L. C. T., Le, T. T., Ağbulut, Ü., & Hoang, A. T. (2025). Mitigating backfire occurrence in HHO-gasoline plug-in hybrid motorcycle engine. International Journal of Hydrogen Energy, 138, 755–774. https://doi.org/10.1016/j.ijhydene.2025.05.179
  7. Bui, V. G., Bui, T. M. T., Hoang, A. T., Nižetić, S., Nguyen Thi, T. X., & Vo, A. V. (2021). Hydrogen-Enriched Biogas Premixed Charge Combustion and Emissions in Direct Injection and Indirect Injection Diesel Dual Fueled Engines: A Comparative Study. Journal of Energy Resources Technology, 143(12). https://doi.org/10.1115/1.4051574
  8. Caligiuri, C., Renzi, M., Antolini, D., Patuzzi, F., & Baratieri, M. (2021). Diesel fuel substitution using forestry biomass producer gas: Effects of dual fuel combustion on performance and emissions of a micro-CHP system. Journal of the Energy Institute, 98, 334–345. https://doi.org/10.1016/j.joei.2021.07.010
  9. Caligiuri, C., Renzi, M., Antolini, D., Patuzzi, F., & Baratieri, M. (2023). Optimizing the use of forestry biomass producer gas in dual fuel engines: A novel emissions reduction strategy for a micro-CHP system. Energy Conversion and Management: X, 20, 100498. https://doi.org/10.1016/j.ecmx.2023.100498
  10. Chanphavong, L., & Zainal, Z. A. (2019). Characterization and challenge of development of producer gas fuel combustor: A review. Journal of the Energy Institute, 92(5), 1577–1590. https://doi.org/10.1016/j.joei.2018.07.016
  11. Chen, W.-H., & Chen, C.-Y. (2020). Water gas shift reaction for hydrogen production and carbon dioxide capture: A review. Applied Energy, 258, 114078
  12. Chermprayong, P., Sutheerasak, E., Pirompugd, W., Chuepeng, S., & Sanitjai, S. (2024). Increasing Flow Rates of Air and Coconut Shell Producer Gas Mixed with PME20 for a Diesel Engine Generator (pp. 285–293). https://doi.org/10.1007/978-3-031-49787-2_26
  13. Dabi, M., & Saha, U. K. (2015, December). Experimental Analysis of a Dual-Fuel Engine Fueled by Producer Gas Derived From Pine Leaves and Cattle Dung Briquettes. ASME 2015 Gas Turbine India Conference. https://doi.org/10.1115/GTINDIA2015-1263
  14. Dai, H., Zhao, H., Chen, S., & Jiang, B. (2021). A Microwave-Assisted Boudouard Reaction: A Highly Effective Reduction of the Greenhouse Gas CO2 to Useful CO Feedstock with Semi-Coke. Molecules, 26(6), 1507. https://doi.org/10.3390/molecules26061507
  15. Das, S., Kanth, S., Das, B., & Debbarma, S. (2022). Experimental evaluation of hydrogen enrichment in a dual-fueled CRDI diesel engine. International Journal of Hydrogen Energy, 47(20), 11039–11051. https://doi.org/10.1016/j.ijhydene.2022.01.125
  16. Das, S., Kashyap, D., Kalita, P., Kulkarni, V., & Itaya, Y. (2020). Clean gaseous fuel application in diesel engine: A sustainable option for rural electrification in India. Renewable and Sustainable Energy Reviews, 117, 109485. https://doi.org/10.1016/j.rser.2019.109485
  17. Ferreira, S. L. C., Bruns, R. E., Ferreira, H. S., Matos, G. D., David, J. M., Brandão, G. C., da Silva, E. G. P., Portugal, L. A., dos Reis, P. S., Souza, A. S., & dos Santos, W. N. L. (2007). Box-Behnken design: An alternative for the optimization of analytical methods. Analytica Chimica Acta, 597(2), 179–186. https://doi.org/10.1016/j.aca.2007.07.011
  18. Freda, C., Catizzone, E., Villone, A., & Cornacchia, G. (2024). Biomass gasification in rotary kiln integrated with a producer gas thermal cleaning unit: An experimental investigation. Results in Engineering, 21, 101763. https://doi.org/10.1016/j.rineng.2024.101763
  19. Ghodke, P., & Mandapati, R. N. (2019). Investigation of particle level kinetic modeling for babul wood pyrolysis. Fuel, 236, 1008–1017. https://doi.org/10.1016/j.fuel.2018.09.084
  20. Gunst, R. F., Myers, R. H., & Montgomery, D. C. (1996). Response Surface Methodology: Process and Product Optimization Using Designed Experiments. Technometrics, 38(3), 285. https://doi.org/10.2307/1270613
  21. Hadiyanto, H., Christwardana, M., Pratiwi, W. Z., Purwanto, P., Sudarno, S., Haryani, K., & Hoang, A. T. (2022). Response surface optimization of microalgae microbial fuel cell (MMFC) enhanced by yeast immobilization for bioelectricity production. Chemosphere, 287, 132275. https://doi.org/10.1016/j.chemosphere.2021.132275
  22. Hadiyat, M. A., Sopha, B. M., & Wibowo, B. S. (2022). Response Surface Methodology Using Observational Data: A Systematic Literature Review. Applied Sciences, 12(20), 10663. https://doi.org/10.3390/app122010663
  23. Halewadimath, S. S., Banapurmath, N. R., Yaliwal, V. S., Gaitonde, V. N., Khan, T. M. Y., Vadlamudi, C., Krishnappa, S., & Sajjan, A. M. (2023). Experimental Investigations on Dual-Fuel Engine Fueled with Tertiary Renewable Fuel Combinations of Biodiesel and Producer—Hydrogen Gas Using Response Surface Methodology. Sustainability, 15(5), 4483. https://doi.org/10.3390/su15054483
  24. Halewadimath, S. S., Yaliwal, V. S., Banapurmath, N. R., & Sajjan, A. M. (2020). Influence of hydrogen enriched producer gas (HPG) on the combustion characteristics of a CRDI diesel engine operated on dual-fuel mode using renewable and sustainable fuels. Fuel, 270, 117575. https://doi.org/10.1016/j.fuel.2020.117575
  25. Harrington, E. C. (1965). The desirability function. Industrial Quality Control, 21(10), 494–498
  26. Havilah, P. R., Sharma, A. K., Govindasamy, G., Matsakas, L., & Patel, A. (2022). Biomass Gasification in Downdraft Gasifiers: A Technical Review on Production, Up-Gradation and Application of Synthesis Gas. Energies, 15(11), 3938. https://doi.org/10.3390/en15113938
  27. Hoang, A. T. (2019). Experimental study on spray and emission characteristics of a diesel engine fueled with preheated bio-oils and diesel fuel. Energy, 171, 795–808. https://doi.org/10.1016/j.energy.2019.01.076
  28. Hoang, A. T. (2024). Critical review on the characteristics of performance, combustion and emissions of PCCI engine controlled by early injection strategy based on narrow-angle direct injection (NADI). Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 46(1), 13791–13805. https://doi.org/10.1080/15567036.2020.1805048
  29. Hoang, A. T., Bora, B. J., Huynh, D. N. L., Nguyen, D. K. P., & Le, V. V. (2025). Dual-fuel diesel engine features powered by ammonia under various pilot-fuel injection timing: Comprehensive analysis and response surface methodology-based optimization. International Journal of Engine Research. https://doi.org/10.1177/14680874251341036
  30. Hoang, A. T., Chen, W. H., Paramasivam, P., Kanti, P. K., Huynh, D. N. L., Abdou El-Shafay, A. S., & Nguyen, V. Q. (2025). Comprehensive investigation on performance and emission of dual-fuel diesel engine fuelled with biodiesel and hydrogen using D-optimal design and desirability-based multi-attribute optimization. International Journal of Hydrogen Energy, 146, 150005. https://doi.org/10.1016/J.IJHYDENE.2025.06.195
  31. Huang, Wan, Liu, Zhang, Ma, Zhang, & Zhou. (2019). A Downdraft Fixed-Bed Biomass Gasification System with Integrated Products of Electricity, Heat, and Biochar: The Key Features and Initial Commercial Performance. Energies, 12(15), 2979. https://doi.org/10.3390/en12152979
  32. Huynh, D. N. L., Hoang, A. T., Nayak, S. K., Guerrero-Pérez, M. O., Rodríguez-Castellón, E., López-Escalante, M. C., Sănduleac, M., Efremov, C., Bui, V. G., Luu, V. C., Nguyen, X. P., & Cao, D. N. (2025). Combining Babool wood-derived producer gas and hydrogen with biodiesel as efficient strategies for dual-fuel diesel engine in advancing sustainable energy. Case Studies in Thermal Engineering, 75, 107097. https://doi.org/10.1016/J.CSITE.2025.107097
  33. Jain, A., Jyoti Bora, B., Kumar, R., Sharma, P., Jyoti Medhi, B., Ahsan Farooque, A., Tirth, V., Senthilkumar, N., & Kumar Peyyala, P. (2023). Impact of titanium dioxide (TiO2) nanoparticles addition in Eichhornia Crassipes biodiesel used to fuel compression ignition engine at variable injection pressure. Case Studies in Thermal Engineering, 49, 103295. https://doi.org/10.1016/j.csite.2023.103295
  34. Khandal, S. V., Ağbulut, Ü., Afzal, A., Sharifpur, M., Abdul Razak, K., & Khalilpoor, N. (2022). Influences of hydrogen addition from different dual‐fuel modes on engine behaviors. Energy Science & Engineering, 10(3), 881–891. https://doi.org/10.1002/ese3.1065
  35. Krop, N. S., & Brito, P. (2023). A Review on Gaseous Fuels for Dual-Fuel Diesel Engines. In Proceedings of the 2nd International Conference on Water Energy Food and Sustainability (ICoWEFS 2022) (pp. 386–395). Springer International Publishing. https://doi.org/10.1007/978-3-031-26849-6_40
  36. Lahijani, P., Zainal, Z. A., Mohammadi, M., & Mohamed, A. R. (2015). Conversion of the greenhouse gas CO2 to the fuel gas CO via the Boudouard reaction: A review. Renewable and Sustainable Energy Reviews, 41, 615–632. https://doi.org/10.1016/j.rser.2014.08.034
  37. Le, T. T., Balasubramanian, D., Le, A. T., Cao, D. N., Chen, W.-H., Venugopal, I. P., Ağbulut, Ü., Truong, T. H., Nguyen, X. P., Bui, V. G., & Hoang, A. T. (2025). Partially-charged advanced low-temperature combustion in diesel engine: Progress and prospects. Alexandria Engineering Journal, 129, 373–440. https://doi.org/10.1016/j.aej.2025.06.021
  38. Le, T. T., Sharma, P., Le, H. C., Le, H. S., Osman, S. M., Truong, T. H., Le, D. T. N., Rowinski, L., & Tran, V. D. (2024). A glass-box approach for predictive modeling based on experimental data for a waste biomass derived producer gas-powered dual-fuel engine. International Journal of Hydrogen Energy, 58, 1122–1137. https://doi.org/10.1016/j.ijhydene.2024.01.284
  39. Liu, H., Wang, Z., Long, Y., Xiang, S., Wang, J., & Wagnon, S. W. (2015). Methanol-gasoline Dual-fuel Spark Ignition (DFSI) combustion with dual-injection for engine particle number (PN) reduction and fuel economy improvement. Energy, 89, 1010–1017. https://doi.org/10.1016/j.energy.2015.06.051
  40. Ma, L., Zhang, G., Liu, A., Zheng, J., Shao, Y., Ding, X., Gao, P., & Li, Q. (2026). Unexpected Increase in Tail Gas Greenhouse Effect of Diesel Vehicles Equipped with Advanced Post-Treatment Systems. Separation and Purification Technology, 381, 135617. https://doi.org/10.1016/j.seppur.2025.135617
  41. Monteiro, E., Ramos, A., & Rouboa, A. (2024). Fundamental designs of gasification plants for combined heat and power. Renewable and Sustainable Energy Reviews, 196, 114305. https://doi.org/10.1016/j.rser.2024.114305
  42. Nayak, B., Singh, T. J., & Hoang, A. T. (2021). Experimental analysis of performance and emission of a turbocharged diesel engine operated in dual-fuel mode fueled with bamboo leaf-generated gaseous and waste palm oil biodiesel/diesel fuel blends. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–19. https://doi.org/10.1080/15567036.2021.2009595
  43. Nazarpour, M., Taghizadeh-Alisaraei, A., Asghari, A., Abbaszadeh-Mayvan, A., & Tatari, A. (2022). Optimization of biohydrogen production from microalgae by response surface methodology (RSM). Energy, 253, 124059. https://doi.org/10.1016/j.energy.2022.124059
  44. Nguyen, P. Q. P., Tran, V. D., Nguyen, D., Luong, C. N., & Paramasivam, P. (2025). Application of response surface methodology to optimize the dual-fuel engine running on producer gas. International Journal of Renewable Energy Development, 14(2), 214–223. https://doi.org/10.61435/ijred.2025.60927
  45. Nguyen, T. B. N., & Le, N. V. L. (2023). Biomass resources and thermal conversion biomass to biofuel for cleaner energy: A review. Journal of Emerging Science and Engineering, 1(1), 6–13. https://doi.org/10.61435/jese.2023.2
  46. Nguyen, V. G., Tran, M. H., Paramasivam, P., Le, H. C., & Nguyen, D. T. (2024). Biomass: A Versatile Resource for Biofuel, Industrial, and Environmental Solution. International Journal on Advanced Science, Engineering and Information Technology, 14(1), 268–286. https://doi.org/10.18517/ijaseit.14.1.17489
  47. Nguyen, V. N., Nayak, B., Singh, T. J., Nayak, S. K., Cao, D. N., Le, H. C., & Nguyen, X. P. (2023). Investigations on the performance, emission and combustion characteristics of a dual-fuel diesel engine fueled with induced bamboo leaf gaseous fuel and injected mixed biodiesel-diesel blends. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2023.06.074
  48. Nguyen, V. N., Sharma, P., Kumar, A., Pham, M. T., Le, H. C., Truong, T. H., & Cao, D. N. (2023). Optimization of biodiesel production from Nahar oil using Box-Behnken design, ANOVA and grey wolf optimizer. International Journal of Renewable Energy Development, 12(4), 711–719. https://doi.org/10.14710/ijred.2023.54941
  49. Oduor, N. M., & Githiomi, J. K. (2013). Fuel-wood energy properties of Prosopis juliflora and Prosopis pallida grown in Baringo District, Kenya. African Journal of Agricultural Research 8(21), 2476–2481. https://doi.org/10.5897/AJAR08.221
  50. Palani, Y., Devarajan, C., Manickam, D., & Thanikodi, S. (2020). Performance and emission characteristics of biodiesel-blend in diesel engine: A review. Environmental Engineering Research, 27(1), 200338–0. https://doi.org/10.4491/eer.2020.338
  51. Patra, T. K., & Sheth, P. N. (2015). Biomass gasification models for downdraft gasifier: A state-of-the-art review. Renewable and Sustainable Energy Reviews, 50, 583–593. https://doi.org/10.1016/j.rser.2015.05.012
  52. Percy, A. J., & Edwin, M. (2023). Studies on the performance and emission characteristics of a dual fuel VCR engine using producer gas as secondary fuel: An optimization approach using response surface methodology. Energy, 263, 125685. https://doi.org/10.1016/j.energy.2022.125685
  53. Pereira, L. M. S., Milan, T. M., & Tapia-Blácido, D. R. (2021). Using response surface methodology (RSM) to optimize 2G bioethanol production: a review. Biomass and Bioenergy, 151, 106166
  54. Phrommarat, B., & Arromdee, P. (2025). Comparative life cycle assessment of pelletized biomass fuels from corncobs and rubberwood sawdust. International Journal of Renewable Energy Development, 14(4), 740–750. https://doi.org/10.61435/ijred.2025.61011
  55. Prabhahar, M., Prakash, S., Nallusamy, S., Ponnarasu, S., & Reddy, Y. D. (2024). Optimization of Operating Factors and Blending Levels of Diesel, Algae Methyl Ester, Graphene Oxide and Producer Gases - Calorific Values Using Response Surface Methodology in HCCI Engine. International Journal of Mechanical Engineering, 11(1), 1–15. https://doi.org/10.14445/23488360/IJME-V11I1P101
  56. Prajapati, L. K., & Tirkey, J. V. (2025). Effect of injection pressure and nozzle strategy optimization for the performance improvement on CI engine fuelled with diesel and co-gasified biomass producer gas: A diesel-RK and RSM-based approach. Process Safety and Environmental Protection, 198, 107197. https://doi.org/10.1016/j.psep.2025.107197
  57. Prajapati, L. K., Tirkey, J. V., Jena, P., & Giri, A. (2024). Parametric performance evaluation of SI engine using producer gas-biogas-hydrogen blend as a fuel: A thermodynamic modeling and optimization approach. International Journal of Hydrogen Energy, 72, 268–287. https://doi.org/10.1016/j.ijhydene.2024.05.386
  58. Raj, R., Tirkey, J. V., Jena, P., & Prajapati, L. K. (2024). Comparative analysis of Gasifier-CI engine performance and emissions characteristics using diesel with producer gas derived from coal– briquette-coconut shell-mahua feedstock and its blends. Energy, 293, 130708. https://doi.org/10.1016/j.energy.2024.130708
  59. Ramadhas, A. S., Jayaraj, S., & Muraleedharan, C. (2008). Dual fuel mode operation in diesel engines using renewable fuels: Rubber seed oil and coir-pith producer gas. Renewable Energy, 33(9), 2077–2083. https://doi.org/10.1016/j.renene.2007.11.013
  60. Raman, P., Ram, N. K., & Gupta, R. (2013). A dual fired downdraft gasifier system to produce cleaner gas for power generation: Design, development and performance analysis. Energy, 54, 302–314. https://doi.org/10.1016/j.energy.2013.03.019
  61. Rejeb, O., Ghenai, C., Jomaa, M. H., & Bettayeb, M. (2020). Statistical study of a solar nanofluid photovoltaic thermal collector performance using response surface methodology. Case Studies in Thermal Engineering, 21, 100721. https://doi.org/10.1016/j.csite.2020.100721
  62. Reyes, M., Pérez, J. F., & Sastre, R. (2024). Combustion performance and flame front morphology of producer gas from a biomass gasification-based cookstove. Fuel, 362, 130763. https://doi.org/10.1016/j.fuel.2023.130763
  63. Santana, H. E. P., Jesus, M., Santos, J., Rodrigues, A. C., Pires, P., Ruzene, D. S., Silva, I. P., & Silva, D. P. (2025). Lignocellulosic Biomass Gasification: Perspectives, Challenges, and Methods for Tar Elimination. Sustainability, 17(5), 1888. https://doi.org/10.3390/su17051888
  64. Sarabia, L. A., & Ortiz, M. C. (2009). Response Surface Methodology. Comprehensive Chemometrics, 1(2), 345–390. https://doi.org/10.1016/B978-044452701-1.00083-1
  65. Sarker, T. R., Nanda, S., & Dalai, A. K. (2023). Parametric studies on hydrothermal gasification of biomass pellets using Box-Behnken experimental design to produce fuel gas and hydrochar. Journal of Cleaner Production, 388, 135804. https://doi.org/10.1016/j.jclepro.2022.135804
  66. Sharma, P., & Bora, B. J. (2023). Modeling and optimization of a CI engine running on producer gas fortified with oxyhydrogen. Energy, 270, 126909. https://doi.org/10.1016/j.energy.2023.126909
  67. Sharma, P., Chhillar, A., Said, Z., Huang, Z., Nguyen, V. N., Nguyen, P. Q. P., & Nguyen, X. P. (2022). Experimental investigations on efficiency and instability of combustion process in a diesel engine fueled with ternary blends of hydrogen peroxide additive/biodiesel/diesel. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(3), 5929–5950. https://doi.org/10.1080/15567036.2022.2091692
  68. Sharma, P., Sahoo, B. B., Said, Z., Hadiyanto, H., Nguyen, X. P., Nižetić, S., Huang, Z., Hoang, A. T., & Li, C. (2023). Application of machine learning and Box-Behnken design in optimizing engine characteristics operated with a dual-fuel mode of algal biodiesel and waste-derived biogas. International Journal of Hydrogen Energy, 48(18), 6738–6760. https://doi.org/10.1016/j.ijhydene.2022.04.152
  69. Sharma, P., Sharma, A. K., & Ağbulut, Ü. (2025). A comprehensive review on biomass-derived producer gas as an alternative fuel: a waste biomass-to-energy perspective. Journal of Thermal Analysis and Calorimetry, 150(12), 8913–8932. https://doi.org/10.1007/s10973-025-14292-8
  70. Shu, Z., Gan, H., Ji, Z., & Liu, B. (2022). Modeling and Optimization of Fuel-Mode Switching and Control Systems for Marine Dual-Fuel Engine. Journal of Marine Science and Engineering, 10(12), 2004. https://doi.org/10.3390/jmse10122004
  71. Singh, P., Kumar, R., Sharma, S., & Kumar, S. (2021). Effect of engine parameters on the performance of dual-fuel CI engines with producer gas—a review. Energy & Fuels, 35(20), 16377–16402
  72. Smith R J, B., Loganathan, M., & Shantha, M. S. (2010). A Review of the Water Gas Shift Reaction Kinetics. International Journal of Chemical Reactor Engineering, 8(1). https://doi.org/10.2202/1542-6580.2238
  73. Stettler, M. E. J., Midgley, W. J. B., Swanson, J. J., Cebon, D., & Boies, A. M. (2016). Greenhouse Gas and Noxious Emissions from Dual Fuel Diesel and Natural Gas Heavy Goods Vehicles. Environmental Science & Technology, 50(4), 2018–2026. https://doi.org/10.1021/acs.est.5b04240
  74. Subramanian, B., & Thangavel, V. (2020). Experimental investigations on performance, emission and combustion characteristics of Diesel-Hydrogen and Diesel-HHO gas in a Dual fuel CI engine. International Journal of Hydrogen Energy, 45(46), 25479–25492. https://doi.org/10.1016/j.ijhydene.2020.06.280
  75. Sunil Kumar, K., Surakasi, R., Patro, S. G. K., Govil, N., Ramis, M. K., Razak, A., Sharma, P., Alsubih, M., Islam, S., Khan, T. M. Y., Almakayeel, N., & Chintakindi, S. (2024). Performance, Combustion, and Emission analysis of diesel engine fuelled with pyrolysis oil blends and n-propyl alcohol-RSM optimization and ML modelling. Journal of Cleaner Production, 434, 140354. https://doi.org/10.1016/j.jclepro.2023.140354
  76. Susastriawan, A. A. P., Saptoadi, H., & Purnomo. (2017). Small-scale downdraft gasifiers for biomass gasification: A review. Renewable and Sustainable Energy Reviews, 76, 989–1003. https://doi.org/10.1016/j.rser.2017.03.112
  77. Sutar, K. B., Kohli, S., & Ravi, M. R. (2023). Clean cooking with downdraft biomass gasifier cookstove: Effect of gasifier performance. Energy, 263, 125631. https://doi.org/10.1016/j.energy.2022.125631
  78. Thomson, R., Kwong, P., Ahmad, E., & Nigam, K. D. P. (2020). Clean syngas from small commercial biomass gasifiers; a review of gasifier development, recent advances and performance evaluation. International Journal of Hydrogen Energy, 45(41), 21087–21111. https://doi.org/10.1016/j.ijhydene.2020.05.160
  79. Tulu, T. K., Atnaw, S. M., Bededa, R. D., Wakshume, D. G., & Ancha, V. R. (2022). Kinetic Modeling and Optimization of Biomass Gasification in Bubbling Fluidized Bed Gasifier Using Response Surface Method. International Journal of Renewable Energy Development, 11(4), 1043–1059. https://doi.org/10.14710/ijred.2022.45179
  80. Veza, I., Afzal, A., Mujtaba, M. A., Tuan Hoang, A., Balasubramanian, D., Sekar, M., Fattah, I. M. R., Soudagar, M. E. M., EL-Seesy, A. I., Djamari, D. W., Hananto, A. L., Putra, N. R., & Tamaldin, N. (2022). Review of artificial neural networks for gasoline, diesel and homogeneous charge compression ignition engine. Alexandria Engineering Journal, 61(11), 8363–8391. https://doi.org/10.1016/j.aej.2022.01.072
  81. Winangun, K., Setiyawan, A., & Sudarmanta, B. (2023). The combustion characteristics and performance of a Diesel Dual-Fuel (DDF) engine fueled by palm oil biodiesel and hydrogen gas. Case Studies in Thermal Engineering, 42, 102755. https://doi.org/10.1016/j.csite.2023.102755
  82. Zhang, Z., Dong, R., Lan, G., Yuan, T., & Tan, D. (2023). Diesel particulate filter regeneration mechanism of modern automobile engines and methods of reducing PM emissions: a review. Environmental Science and Pollution Research, 30(14), 39338–39376. https://doi.org/10.1007/s11356-023-25579-4

Last update:

No citation recorded.

Last update: 2026-01-11 17:30:43

No citation recorded.