skip to main content

Implementation of pumped hydro/photovoltaic systems in mining-degraded areas: a case study in Quadrilátero Ferrífero, Minas Gerais, Brazil

1Graduate Program in Mechanical Engineering - Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, MG, Brazil

2Graduate Program in Mechanical Engineering - Universidade Federal de Itajubá (UNIFEI). Itajubá, MG, Brazil

3Department of Electrical Engineering, Hydraulic Research Center - Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, MG, Brazil

Received: 8 Dec 2023; Revised: 27 Mar 2024; Accepted: 16 Apr 2024; Available online: 2 May 2024; Published: 1 Jul 2024.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
This work presents a proposal for the transformation of mining-degraded areas into renewable energy installations, converting deactivated mine pits, in the Quadrilátero Ferrífero (QF) region in state of Minas Gerais (MG), Brazil, into reservoirs for Pumped Storage Hydropower (PSH). Additionally, it proposes the alteration of adjacent areas impacted by mining extraction process, through their conversion into Photovoltaic Power Plants (PV). This measure has the potential to turn mining liabilities into sources of energy with lower environmental impact and sustainability for society. This process allows energy to be stored in the form of hydraulic batteries, which can mitigate the effects of intermittency of photovoltaic generation in the electrical grid. The presented methodology involves mapping deactivated mines, calculating the energy potential of the coupled PSH and PV systems, and conducting an economic feasibility study for PSH implementation. The work includes a case study discussing potential local environmental impacts and the energy potentials of this solution. The case study resulted in identifying a suitable pair of mine pits for a PSH in the QF, capable of supplying the electrical grid with approximately 234.3 MW, with the generated energy cost ranging between U$112.26/MWh to U$167.22/MWh. It is concluded that utilizing inactive mines as PSH reservoirs and installing PV in adjacent mining-degraded areas are innovative and technologically feasible strategies. Economically, their implementation will depend on the market price of energy.
Fulltext View|Download
Keywords: Pumped Storage Hydropower (PSH); Energy Storage; Abandoned Mining Pits; Sustainable Energy; Mining-degraded areas
Funding: Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) under contract Finance Code 001; CNPq – PQ under contract 304370/2018‐5/305059/2022‐0; Fapemig under contract PPM‐00252‐18; SEFAC/ANEEL under contract PD‐06899‐ 2912/2016

Article Metrics:

  1. ANM. (2023). Anuário Mineral Brasileiro Principais Substâncias Metálicas. www.anm.gov.br
  2. Arnaoutakis, G. E., Kefala, G., Dakanali, E., & Katsaprakakis, D. Al. (2022). Combined Operation of Wind-Pumped Hydro Storage Plant with a Concentrating Solar Power Plant for Insular Systems: A Case Study for the Island of Rhodes. Energies, 15(18). https://doi.org/10.3390/en15186822
  3. Barnes, F. S., & Levine, J. G. (2011). Large Energy Storage System Handbook (1st ed.). CRC Press. https://doi.org/10.1201/b10778
  4. Brandão, R., Castro, N. De, & Hunt, J. (2021). A Viabilidade das Usinas Reversíveis no Sistema Interligado Nacional (1st ed.). E-Papers
  5. Canales, F. A., Beluco, A., & Mendes, C. A. B. (2015). Usinas hidrelétricas reversíveis no Brasil e no mundo: aplicação e perspectivas. https://doi.org/05902/2236117016002
  6. Cazzaniga, R., Rosa-Clot, M., Rosa-Clot, P., & Tina, G. M. (2019). Integration of PV floating with hydroelectric power plants. In Heliyon (Vol. 5, Issue 6). Elsevier Ltd. https://doi.org/10.1016/j.heliyon.2019.e01918
  7. Costa, P. P. N. (2022). Centrais fotovoltaicas consorciadas à centrais geradoras hidrelétricas (CGHS) – Um estudo de caso [MSc Dissertation, Universidade Federal de Minas Gerais]. http://hdl.handle.net/1843/47200
  8. CRESESB. (2018). Potencial Solar - SunData v 3.0. http://www.cresesb.cepel.br/index.php?section=sundata
  9. Deane, J. P., Ó Gallachóir, B. P., & McKeogh, E. J. (2010). Techno-economic review of existing and new pumped hydro energy storage plant. In Renewable and Sustainable Energy Reviews, 14(4),1293–1302). https://doi.org/10.1016/j.rser.2009.11.015
  10. Elera Renováveis. (2023). Complexo Solar Janaúba. https://www.elera.com/nossos-ativos/janauba/
  11. EPE. (2019). Estudos de inventário de usinas hidrelétricas reversíveis. https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/nt-006-2019-estudos-de-inventario-de-usinas-hidreletricas-reversiveis
  12. EPE. (2021). Usinas Hidrelétricas Reversíveis (UHR): Desafios para inserção em mercados de energia elétrica. http://www.epe.gov.br
  13. EPE. (2022). LEILÃO DE ENERGIA NOVA A-5 DE 2022. https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-665/Informe%20Vencedores%20LEN%20A5_2022.pdf
  14. FEAM. (2022). II Cadastro de Minas Paralisadas e Abandonadas do Estado de Minas Gerais
  15. Fernandes, P. R. M., & Lima, H. M. de. (2021). O quadro normativo do fechamento de mina e a gestão de minas abandonadas no Brasil e no Estado de Minas Gerais. Revista Brasileira de Gestão Ambiental e Sustentabilidade, 8(18), 352–370. https://doi.org/10.21438/rbgas(2021)081823
  16. Ferreira, T. V. B., Almeida, E. M. de, Mattos, A. D. M. de, Sodré, F. N. A., Salgado, G. de P., Vieira, H. de M., & Conde, M. R. (2022). Emissão de gases de efeito estufa em Reservatórios Hidrelétricos - NT EPE-DEA-SMA 012/2022. https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-673/NT%20EPE-SMA-DEA_012-2022.pdf
  17. Gol, A. E., & Ščasný, M. (2023). Techno-economic analysis of fixed versus sun-tracking solar panels. International Journal of Renewable Energy Development, 12(3), 615–626. https://doi.org/10.14710/ijred.2023.50165
  18. Görtz, J., Aouad, M., Wieprecht, S., & Terheiden, K. (2022). Assessment of pumped hydropower energy storage potential along rivers and shorelines. Renewable and Sustainable Energy Reviews, 165. https://doi.org/10.1016/j.rser.2021.112027
  19. Guittet, M., Capezzali, M., Gaudard, L., Romerio, F., Vuille, F., & Avellan, F. (2016). Study of the drivers and asset management of pumped-storage power plants historical and geographical perspective. Energy, 111, 560–579. https://doi.org/10.1016/j.energy.2016.04.052
  20. Hunt, J. D., Freitas, M. A. V, & Pereira, A. O. (2014). Enhanced-Pumped-Storage: Combining pumped-storage in a yearly storage cycle with dams in cascade in Brazil. Energy, 78, 513–523. https://doi.org/https://doi.org/10.1016/j.energy.2014.10.038
  21. IEA. (2022). World Energy Outlook 2022. www.iea.org/t&c/
  22. IHA. (2022). Hydropower Status Report. https://www.hydropower.org/publications/2022-hydropower-status-report
  23. Joseph, A., & Chelliah, T. R. (2018). A review of power electronic converters for variable speed pumped storage plants: Configurations, operational challenges, and future scopes. In IEEE Journal of Emerging and Selected Topics in Power Electronics 6(1), 103–119). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/JESTPE.2017.2707397
  24. Leite, C. R. (2020). Perda de capacidade de geração em centrais hidrelétricas por efeito da evolução temporal da rugosidade do circuito hidráulico da instalação [MSc Dissertation]. Universidade Federal de Itajubá
  25. Libanori, G. H. D., Pinheiro, V. de C. N., & Francato, A. L. (2018). Hybrid power plants as an alternative to fit pumped-storage hydro in Brazilian electricity sector regulatory framework. International Journal of Energy Research, 42(15), 4898–4908. https://doi.org/10.1002/er.4224
  26. Ma, T., Yang, H., Lu, L., & Peng, J. (2015). Pumped storage-based standalone photovoltaic power generation system: Modeling and techno-economic optimization. Applied Energy, 137, 649–659. https://doi.org/https://doi.org/10.1016/j.apenergy.2014.06.005
  27. Margeta, J., & Glasnovic, Z. (2010). Feasibility of the green energy production by hybrid solar + hydro power system in Europe and similar climate areas. In Renewable and Sustainable Energy Reviews,14(6),1580–1590). https://doi.org/10.1016/j.rser.2010.01.019
  28. Margeta, J., & Glasnovic, Z. (2012). Theoretical settings of photovoltaic-hydro energy system for sustainable energy production. Solar Energy, 86(3), 972–982. https://doi.org/10.1016/j.solener.2012.01.007
  29. Mongird, K., Viswanathan, V., Alam, J., Vartanian, C., Sprenkle, V., & Baxter, R. (2020). 2020 Grid Energy Storage Technology Cost and Performance Assessment
  30. Nibbi, L., Sospiro, P., De Lucia, M., & Wu, C. C. (2022). Improving Pumped Hydro Storage Flexibility in China: Scenarios for Advanced Solutions Adoption and Policy Recommendations †. Energies, 15(21). https://doi.org/10.3390/en15217918
  31. Nikolaos, P. C., Marios, F., & Dimitris, K. (2023). A Review of Pumped Hydro Storage Systems. In Energies (Vol. 16, Issue 11). MDPI. https://doi.org/10.3390/en16114516
  32. Oliveira Júnior, J. B. de. (2001). Desativação de empreendimentos mineiros: estratégias para diminuir o passivo ambiental [PhD Thesis, Universidade de São Paulo]. In Escola Politécnica, Universidade de São Paulo. https://www.teses.usp.br/teses/disponiveis/3/3134/tde-22102003-153601/pt-br.php
  33. Rehman, S., Al-Hadhrami, L. M., & Alam, M. M. (2015). Pumped hydro energy storage system: A technological review. In Renewable and Sustainable Energy Reviews (Vol. 44, pp. 586–598). Elsevier Ltd. https://doi.org/10.1016/j.rser.2014.12.040
  34. Saigustia, C., & Robak, S. (2021). Review of potential energy storage in abandoned mines in Poland. Energies 14(19). MDPI. https://doi.org/10.3390/en14196272
  35. Schreiber, G. P. (1978). Usinas Hidrelétricas (1st ed.). Editora Edgard Blucher Ltda
  36. SEMAD, S. de E. de M.-A. e D. S. (2023). Deliberação Normativa Copam no 220, de 21 de março de 2018. Https://Transparencia.Meioambiente.Mg.Gov.Br/Views/Introducao_fechamento_mina.Php
  37. Silva, S. B., Severino, M. M., & De Oliveira, M. A. G. (2013). A stand-alone hybrid photovoltaic, fuel cell and battery system: A case study of Tocantins, Brazil. Renewable Energy, 57, 384–389. https://doi.org/10.1016/j.renene.2013.02.004
  38. Silvério, N. M., Barros, R. M., Tiago Filho, G. L., Redón-Santafé, M., Santos, I. F. S. dos, & Valério, V. E. de M. (2018). Use of floating PV plants for coordinated operation with hydropower plants: Case study of the hydroelectric plants of the São Francisco River basin. Energy Conversion and Management, 171, 339–349. https://doi.org/10.1016/j.enconman.2018.05.095
  39. Stocks, M., Stocks, R., Lu, B., Cheng, C., & Blakers, A. (2021). Global Atlas of Closed-Loop Pumped Hydro Energy Storage. Joule, 5(1), 270–284. https://doi.org/10.1016/j.joule.2020.11.015
  40. System Advisor Model (SAM) (2023). https://sam.nrel.gov/download.html
  41. Tonidandel, R. de P. (2011). Aspectos Legais e Ambientais do Fechamento de Mina no Estado de Minas [MSc Dissertation, Universidade Federal de Minas Gerais]. https://repositorio.ufmg.br/bitstream/1843/MPBB-8LMGN5/1/rodrigo_tonidandel.pdf
  42. USBLS, B. O. L. S. (2023). CPI Inflation Calculator. www.bls.gov
  43. Vilanova, M. R. N., Flores, A. T., & Balestieri, J. A. P. (2020). Pumped hydro storage plants: a review. In Journal of the Brazilian Society of Mechanical Sciences and Engineering (Vol. 42, Issue 8). Springer. https://doi.org/10.1007/s40430-020-02505-0
  44. Zakeri, B., & Syri, S. (2015). Electrical energy storage systems: A comparative life cycle cost analysis. In Renewable and Sustainable Energy Reviews, 42, 569–596 https://doi.org/10.1016/j.rser.2014.10.011

Last update:

No citation recorded.

Last update: 2024-07-16 06:01:52

No citation recorded.