1Rattanakosin College for Sustainable Energy and Environment, Rajamangala University of Technology Rattanakosin, Nakhon Pathom, Thailand
2Department of Chemistry, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
3Department of Environmental and Sustainable Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
4 Energy Research Institute, Chulalongkorn University, Bangkok, Thailand
5 Department of Chemistry, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok,, Thailand
BibTex Citation Data :
@article{IJRED60569, author = {Kittiphon Phongsakul and Chompoonut Chaiyaraksa and Viboon Sricharoenchaikul and Pongsakorn Kachapongkun and Prangtip Kaewpengkrow}, title = {Induction heating pyrolysis of landfilled plastic waste into valuable hydrocarbon fuels}, journal = {International Journal of Renewable Energy Development}, volume = {14}, number = {2}, year = {2025}, keywords = {Induction heating; Pyrolysis process; Plastic waste; RDF}, abstract = { This research investigated the pyrolysis process for plastic waste treatment using induction heating. The induction system involved a coil wrapped around insulated material to generate heat. The plastic waste was sourced from the Refuse-Derived Fuel (RDF) sorting process from a 15-year-old landfill in the province of Nonthaburi, Thailand. The pyrolysis was performed at temperatures ranging from 400 to 600°C with a batch reactor. The highest yield of pyrolysis oil was 27.6% wt. at 600°C. Energy consumption for converting plastic waste into oil ranged between 9.50 and 13.36 kWh, with the highest consumption at 600 °C. The produced pyrolysis oil at 600°C achieved the highest HHV of 41.33 MJ/kg. The GC/MS analysis of the pyrolysis oil revealed an increase in aromatic and hydrocarbons (C5-C11 and C12-C20) with rising temperature. These carbon fractions are suitable replacements for heavy oil or diesel fuel, as low-oxygenated compounds, and hydrocarbon content in pyrolysis oil are desirable. The amount of char produced at 400°C was the highest, with a yield that ranged from 45.2% wt. to 67.0% wt. Moreover, the pyrolysis process has a significant advantage in lowering greenhouse gas emissions (0.21–0.25% vol.), which releases less CO 2 than the combustion of plastic waste. The findings therefore suggest that pyrolysis oil, which is produced under optimum conditions, can be used as a substitute liquid fuel in the industrial sector, and is consistent with the circular economy's concepts, promoting sustainability and utilizing resource efficiency. }, pages = {332--342} doi = {10.61435/ijred.2025.60569}, url = {https://ijred.cbiore.id/index.php/ijred/article/view/60569} }
Refworks Citation Data :
This research investigated the pyrolysis process for plastic waste treatment using induction heating. The induction system involved a coil wrapped around insulated material to generate heat. The plastic waste was sourced from the Refuse-Derived Fuel (RDF) sorting process from a 15-year-old landfill in the province of Nonthaburi, Thailand. The pyrolysis was performed at temperatures ranging from 400 to 600°C with a batch reactor. The highest yield of pyrolysis oil was 27.6% wt. at 600°C. Energy consumption for converting plastic waste into oil ranged between 9.50 and 13.36 kWh, with the highest consumption at 600 °C. The produced pyrolysis oil at 600°C achieved the highest HHV of 41.33 MJ/kg. The GC/MS analysis of the pyrolysis oil revealed an increase in aromatic and hydrocarbons (C5-C11 and C12-C20) with rising temperature. These carbon fractions are suitable replacements for heavy oil or diesel fuel, as low-oxygenated compounds, and hydrocarbon content in pyrolysis oil are desirable. The amount of char produced at 400°C was the highest, with a yield that ranged from 45.2% wt. to 67.0% wt. Moreover, the pyrolysis process has a significant advantage in lowering greenhouse gas emissions (0.21–0.25% vol.), which releases less CO2 than the combustion of plastic waste. The findings therefore suggest that pyrolysis oil, which is produced under optimum conditions, can be used as a substitute liquid fuel in the industrial sector, and is consistent with the circular economy's concepts, promoting sustainability and utilizing resource efficiency.
Article Metrics:
Last update:
Last update: 2025-04-24 06:00:58
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
International Journal of Renewable Energy Development (ISSN:2252-4940) published by CBIORE is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.