skip to main content

Induction heating pyrolysis of landfilled plastic waste into valuable hydrocarbon fuels

1Rattanakosin College for Sustainable Energy and Environment, Rajamangala University of Technology Rattanakosin, Nakhon Pathom, Thailand

2Department of Chemistry, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand

3Department of Environmental and Sustainable Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand

4 Energy Research Institute, Chulalongkorn University, Bangkok, Thailand

5 Department of Chemistry, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok,, Thailand

View all affiliations
Received: 16 Aug 2024; Revised: 18 Dec 2024; Accepted: 17 Jan 2025; Available online: 23 Feb 2025; Published: 1 Mar 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

This research investigated the pyrolysis process for plastic waste treatment using induction heating. The induction system involved a coil wrapped around insulated material to generate heat. The plastic waste was sourced from the Refuse-Derived Fuel (RDF) sorting process from a 15-year-old landfill in the province of Nonthaburi, Thailand. The pyrolysis was performed at temperatures ranging from 400 to 600°C with a batch reactor. The highest yield of pyrolysis oil was 27.6% wt. at 600°C. Energy consumption for converting plastic waste into oil ranged between 9.50 and 13.36 kWh, with the highest consumption at 600 °C. The produced pyrolysis oil at 600°C achieved the highest HHV of 41.33 MJ/kg. The GC/MS analysis of the pyrolysis oil revealed an increase in aromatic and hydrocarbons (C5-C11 and C12-C20) with rising temperature. These carbon fractions are suitable replacements for heavy oil or diesel fuel, as low-oxygenated compounds, and hydrocarbon content in pyrolysis oil are desirable. The amount of char produced at 400°C was the highest, with a yield that ranged from 45.2% wt. to 67.0% wt. Moreover, the pyrolysis process has a significant advantage in lowering greenhouse gas emissions (0.21–0.25% vol.), which releases less CO2 than the combustion of plastic waste. The findings therefore suggest that pyrolysis oil, which is produced under optimum conditions, can be used as a substitute liquid fuel in the industrial sector, and is consistent with the circular economy's concepts, promoting sustainability and utilizing resource efficiency.

Fulltext View|Download
Keywords: Induction heating; Pyrolysis process; Plastic waste; RDF
Funding: Department of Chemistry, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand,King Mongkut's Institute of Technology Ladkrabang, Research Fund Grant number KREF186708"

Article Metrics:

  1. Al-Salem, S. M. (2019). Thermal pyrolysis of high density polyethylene (HDPE) in a novel fixed bed reactor system for the production of high value gasoline range hydrocarbons (HC). Process Safety and Environmental Protection, 127, 171-179; doi: https://doi.org/10.1016/j.psep.2019.05.008
  2. Anuar Sharuddin, S. D., Abnisa, F., Wan Daud, W. M. A., & Aroua, M. K. (2016). A review on pyrolysis of plastic wastes. Energy Conversion and Management, 115, 308-326; doi: https://doi.org/10.1016/j.enconman.2016.02.037
  3. Breyer, S., Mekhitarian, L., Rimez, B., & Haut, B. (2017). Production of an alternative fuel by the co-pyrolysis of landfill recovered plastic wastes and used lubrication oils. Waste Management, 60, 363-374; doi: https://doi.org/10.1016/j.wasman.2016.12.011
  4. Budsaereechai, S., Hunt, A. J., & Ngernyen, Y. (2019). Catalytic pyrolysis of plastic waste for the production of liquid fuels for engines. RSC Advances, 9(10), 5844-5857; doi: https://doi.org/10.1039/C8RA10058F
  5. Cai, X., Wang, H. P., & Wei, B. (2020). Migration dynamics for liquid/solid interface during levitation melting of metallic materials. International Journal of Heat and Mass Transfer, 151, 119386; doi: https://doi.org/10.1016/j.ijheatmasstransfer.2020.119386
  6. Canopoli, L., Coulon, F., & Wagland, S. T. (2020). Degradation of excavated polyethylene and polypropylene waste from landfill. Science of The Total Environment, 698, 134125; doi: https://doi.org/10.1016/j.scitotenv.2019.134125
  7. Dai, L., Lata, S., Cobb, K., Zou, R., Lei, H., Chen, P., et al. (2024). Recent advances in polyolefinic plastic pyrolysis to produce fuels and chemicals. Journal of Analytical and Applied Pyrolysis, 180, 106551; doi: https://doi.org/10.1016/j.jaap.2024.106551
  8. Das, P., & Tiwari, P. (2018). Valorization of packaging plastic waste by slow pyrolysis. Resources, Conservation and Recycling, 128, 69-77; doi: https://doi.org/10.1016/j.resconrec.2017.09.025
  9. Duangjaiboon, K., Kitiwan, M., & Kaewpengkrow, P. R. (2021). Co-pelletization of Industrial Sewage Sludge and Rice Straw: Characteristics and Economic Analysis. International Journal of Renewable Energy Development, 10(3), 10; doi: https://doi.org/10.14710/ijred.2021.33834
  10. Duong-Viet, C., Truong-Phuoc, L., Nguyen-Dinh, L., Michon, C., Nhut, J.-M., Pham, C., et al. (2023). Magnetic induction assisted pyrolysis of plastic waste to liquid hydrocarbons on carbon catalyst. Materials Today Catalysis, 3, 100028; doi: https://doi.org/10.1016/j.mtcata.2023.100028
  11. Giwa, S. O., Sharifpur, M., & Meyer, J. P. (2020). Effects of uniform magnetic induction on heat transfer performance of aqueous hybrid ferrofluid in a rectangular cavity. Applied Thermal Engineering, 170; doi: https://doi.org/10.1016/j.applthermaleng.2020.115004
  12. Haryanto, A., Hidayat, W., Hasanudin, U., Iryani, D. A., Kim, S., Lee, S., et al. (2021). Valorization of Indonesian Wood Wastes through Pyrolysis: A Review. Energies, 14(5), 1407;
  13. Hegedüs, B., Palotás, Á. B., Muránszky, G., & Dobó, Z. (2024). Investigation of gasoline-like transportation fuel obtained by plastic waste pyrolysis and distillation. Journal of Cleaner Production, 447, 141500; doi: https://doi.org/10.1016/j.jclepro.2024.141500
  14. Jagodzińska, K., Zaini, I. N., Svanberg, R., Yang, W., & Jönsson, P. G. (2021). Pyrolysis of excavated waste from landfill mining: Characterisation of the process products. Journal of Cleaner Production, 279, 123541; doi: https://doi.org/10.1016/j.jclepro.2020.123541
  15. Kaewpengkrow, P., Atong, D., & Sricharoenchaikul, V. (2012). Pyrolysis and gasification of landfilled plastic wastes with Ni-Mg-La/Al2O3 catalyst. Paper presented at the Environmental Technology (United Kingdom)
  16. Kartik, S., Balsora, H. K., Sharma, M., Saptoro, A., Jain, R. K., Joshi, J. B., et al. (2022). Valorization of plastic wastes for production of fuels and value-added chemicals through pyrolysis – A review. Thermal Science and Engineering Progress, 32, 101316; doi: https://doi.org/10.1016/j.tsep.2022.101316
  17. Khan, M. Z., Sultana, M., Al-Mamun, M. R., & Hasan, M. R. (2016). Pyrolytic Waste Plastic Oil and Its Diesel Blend: Fuel Characterization. J Environ Public Health, 2016, 7869080; doi: https://doi.org/10.1155/2016/7869080
  18. Kittithammavong, V., Khanitchaidecha, W., & Thongsanit, P. (2023). CO2 Emissions from Plastic Consumption Behaviors in Thailand. Sustainability, 15(16), 12135;
  19. Kumar, M., Bhujbal, S. K., Kohli, K., Prajapati, R., Sharma, B. K., Sawarkar, A. D., et al. (2024). A review on value-addition to plastic waste towards achieving a circular economy. Science of The Total Environment, 921, 171106; doi: https://doi.org/10.1016/j.scitotenv.2024.171106
  20. Latha, B. M., Nidarsha, Kalyan, C. M., & Monisha, K. (2023). Effective utilization of waste plastic materials using pyrolysis method. Materials Today: Proceedings, 92, 338-343; doi: https://doi.org/10.1016/j.matpr.2023.05.011
  21. Liu, Y., Tao, J., Li, J., Li, H., Li, F., Cheng, Z., et al. (2024). Pyrolysis of combustible fractions in excavated waste: Effect of landfill time on pyrolysis characteristics analyzed by TG-FTIR-MS. Journal of Analytical and Applied Pyrolysis, 177, 106298; doi: https://doi.org/10.1016/j.jaap.2023.106298
  22. Lopez, G., Artetxe, M., Amutio, M., Bilbao, J., & Olazar, M. (2017). Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review. Renewable and Sustainable Energy Reviews, 73, 346-368; doi: https://doi.org/10.1016/j.rser.2017.01.142
  23. Lopez-Urionabarrenechea, A., De Marco, I., Caballero, B. M., Laresgoiti, M. F., & Adrados, A. (2015). Upgrading of chlorinated oils coming from pyrolysis of plastic waste. Fuel Processing Technology, 137, 229-239; doi: https://doi.org/10.1016/j.fuproc.2015.04.015
  24. Macrì, D., Cassano, K., Pierro, A., Le Pera, A., Giglio, E., Muraca, E., et al. (2022). Electromagnetic induction-assisted pyrolysis of pre-treated MSW: Modelling and experimental analysis. Fuel Processing Technology, 233, 107297; doi: https://doi.org/10.1016/j.fuproc.2022.107297
  25. Marais, C., Bunt, J. R., Leokaoke, N. T., Neomagus, H. W. J. P., Okolo, G. N., Wagner, N. J., et al. (2024). Structural analysis and gasification reactivity of chars derived from the slow pyrolysis of extruded coal fines and recycled plastic. Heliyon, 10(20), e39391; doi: https://doi.org/10.1016/j.heliyon.2024.e39391
  26. Mirkarimi, S. M. R., Bensaid, S., & Chiaramonti, D. (2022). Conversion of mixed waste plastic into fuel for diesel engines through pyrolysis process: A review. Applied Energy, 327, 120040; doi: https://doi.org/10.1016/j.apenergy.2022.120040
  27. Oufkir, J., Cherouaki, R., Zerraf, S., & Belaaouad, S. (2024). Highly efficient conversion of plastic waste into fuel via thermal cracking: Thermo-structural analysis of the pyrolysis reactor and characterization of the final product. Materials Today: Proceedings; doi: https://doi.org/10.1016/j.matpr.2024.02.027
  28. Özbay, N., & Yaman, E. (2018). Enhancing the Phenolic Content of Bio-Oil by Acid Pre-Treatment of Biomass. 2018, 7(2), 7; doi: https://doi.org/10.14710/ijred.7.2.163-169
  29. Panda, A. K., Singh, R. K., & Mishra, D. K. (2010). Thermolysis of waste plastics to liquid fuel: A suitable method for plastic waste management and manufacture of value added products—A world prospective. Renewable and Sustainable Energy Reviews, 14(1), 233-248; doi: https://doi.org/10.1016/j.rser.2009.07.005
  30. Pollution Control Department, M. o. N. R. a. E. (2021). The documents for consideration by cabinet on 15 February 2021. Draft - Action plan on plastic waste management phase I (2020 - 2022). Retrieved from Bangkok, Thailand:
  31. Rahman, M. H., Bhoi, P. R., & Menezes, P. L. (2023). Pyrolysis of waste plastics into fuels and chemicals: A review. Renewable and Sustainable Energy Reviews, 188, 113799; doi: https://doi.org/10.1016/j.rser.2023.113799
  32. Rahothan, U., Khemkhao, M., & Kaewpengkrow, P. R. (2023). Solid waste management by RDF production from landfilled waste to renewable fuel of Nonthaburi. International Journal of Renewable Energy Development, 12(5), 968-976; doi: https://doi.org/10.14710/IJRED.2023.52956
  33. Rasaidi, N., Mohamad Daud, A. R., & Ismail, S. N. (2022). Kinetic and Thermodynamic Analysis of Thermal Decomposition of Waste Virgin PE and Waste Recycled PE. 2022, 11(3), 10; doi: https://doi.org/10.14710/ijred.2022.41531
  34. Singh, R. K., Ruj, B., Sadhukhan, A. K., & Gupta, P. (2019). Impact of fast and slow pyrolysis on the degradation of mixed plastic waste: Product yield analysis and their characterization. Journal of the Energy Institute, 92(6), 1647-1657; doi: https://doi.org/10.1016/j.joei.2019.01.009
  35. Sosa Sabogal, O., Valin, S., Thiery, S., & Salvador, S. (2021). Design and thermal characterization of an induction-heated reactor for pyrolysis of solid waste. Chemical Engineering Research and Design, 173, 206-214; doi: https://doi.org/10.1016/j.cherd.2021.07.018
  36. Subhashini, & Mondal, T. (2023). Experimental investigation on slow thermal pyrolysis of real-world plastic wastes in a fixed bed reactor to obtain aromatic rich fuel grade liquid oil. Journal of Environmental Management, 344, 118680; doi: https://doi.org/10.1016/j.jenvman.2023.118680
  37. Sun, N., Chungpaibulpatana, S., & Limmeechokchai, B. (2020). Implementation of Analytic Hierarchy Process for Sustainable Municipal Solid Waste Management: a Case Study of Bangkok. International Energy Journal, 20(3), 325-336;
  38. Sunaryo, S., Sutoyo, Suyitno, & Taufik, M. (2023). Optimizing the quality of char briquette pyrolysisi products of plastic waste. Clean Energy and Smart Technology, 1, 70-76; doi: https://doi.org/10.58641/cest.v1i2.40
  39. Thahir, R., Altway, A., Juliastuti, S. R., & Susianto. (2019). Production of liquid fuel from plastic waste using integrated pyrolysis method with refinery distillation bubble cap plate column. Energy Reports, 5, 70-77; doi: https://doi.org/10.1016/j.egyr.2018.11.004
  40. Treedet, W., Suntivarakorn, R., Mufandi, I., & Singbua, P. (2020). Bio-oil production from Napier grass using a pyrolysis process: Comparison of energy conversion and production cost between bio-oil and other biofuels. International Energy Journal, 20(2), 155-168;
  41. Vieweg, A., Ressel, G., Prevedel, P., Raninger, P., Panzenböck, M., Marsoner, S. (2016). Induction hardening: Differences to a conventional heat treatment process and optimization of its parameters. Paper presented at the IOP Conference Series: Materials Science and Engineering
  42. Xayachak, T., Haque, N., Parthasarathy, R., King, S., Emami, N., Lau, D., et al. (2022). Pyrolysis for plastic waste management: An engineering perspective. Journal of Environmental Chemical Engineering, 10(6), 108865; doi: https://doi.org/10.1016/j.jece.2022.108865
  43. Zahra, N. L., Septiariva, I. Y., Sarwono, A., Qonitan, F. D., Sari, M. M., Gaina, P. C.,(2022). Substitution Garden and Polyethylene Terephthalate (PET) Plastic Waste as Refused Derived Fuel (RDF). 2022, 11(2), 10; doi: https://doi.org/10.14710/ijred.2022.44328

Last update:

No citation recorded.

Last update: 2025-04-24 06:00:58

No citation recorded.