skip to main content

Valorization of coal fly ash for the synthesis of lithium nickel-cobalt-aluminum-iron oxide (NCAF) cathode material

1Chemical Engineering Department, Vocational School, Sebelas Maret University, Surakarta, Central Java, Indonesia

2Centre of Excellence for Electrical Energy Storage Technology, Sebelas Maret University, Surakarta, Central Java, Indonesia

3Pertamina Technology Innovation, PT. Pertamina, Pulogadung, Jakarta, Indonesia

4 Centre of Excellence for Electrical Energy Storage Technology, Sebelas Maret University, Surakarta, Central Java, Japan

5 Graduate School of Engineering, Hokkaido University, Hokkaido, Japan

View all affiliations
Received: 10 Nov 2024; Revised: 6 Jan 2025; Accepted: 26 Jan 2025; Available online: 4 Feb 2025; Published: 1 Mar 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

This study demonstrates a novel approach to high-performance cathode materials by utilizing coal fly ash as a source of Al and Fe dopants for nickel-rich layered oxides. LiNixCoyAlzFe(1-x-y-z)O2 (NCAF) materials were synthesized through a combined hydrometallurgical-solid state route, incorporating fly-ash waste-derived Al/Fe hydroxides (AFH) at various concentrations during the lithiation process. The characteristics of NCAF precursors, AFH and Ni0.8Co0.2C2O4, were thoroughly investigated. Structural analysis confirms the successful formation of single-phase materials with α-NaFeO2 structure (R-3m) up to 5% AFH content, exhibiting changes in the level of order, lattice parameters, and unit cell volume. Surface area characteristics show a transition from 38.747 m²/g to 6.52 m²/g with increasing AFH content, approaching the ideal surface area. The compositional evolution from LiNi0.8Co0.2O2 to LiNi0.66Co0.16Al0.08Fe0.10O2 maintains uniform atomic distribution. In the full-cell configuration with graphite anodes (N/P ratio: 1.2-1.3), NCAF with 5% AFH demonstrates enhanced electrochemical performance (~155 mAh/g), attributed to synergistic effects of Al-induced structural stabilization and Fe-contributed redox activity. This approach establishes a pathway for simple and low-cost battery material development while addressing industrial waste utilization.

Fulltext View|Download
Keywords: Fly ash; Cathode; Characterization; Li-ion battery; Nickel; Waste
Funding: Universitas Sebelas Maret

Article Metrics:

  1. Abdel-Ghany, A. E., Mauger, A., Groult, H., Zaghib, K., & Julien, C. M. (2012). Structural properties and electrochemistry of α-LiFeO2. Journal of Power Sources, 197, 285–291. https://doi.org/10.1016/j.jpowsour.2011.09.054
  2. Chandrasekharam, D., Şener, M. F., Recepoğlu, Y. K., Isık, T., Demir, M. M., & Baba, A. (2024). Lithium: An energy transition element, its role in the future energy demand and carbon emissions mitigation strategy. Geothermics, 119. https://doi.org/10.1016/j.geothermics.2024.102959
  3. Hashem, A. M., Abdel-Ghany, A. E., Scheuermann, M., Indris, S., Ehrenberg, H., Mauger, A., & Julien, C. M. (2019). Doped nanoscale NMC333 as cathode materials for Li-ion batteries. Materials, 12(18). https://doi.org/10.3390/ma12182899
  4. He, K., Ruan, Z., Teng, X., & Zhu, Y. (2017). Facile synthesis and electrochemical properties of spherical LiNi0.85−xCo0.15AlxO2 with sodium aluminate via co-precipitation. Materials Research Bulletin, 90, 131–137. https://doi.org/10.1016/j.materresbull.2017.01.039
  5. He, X., Qiu, X., & Chen, J. (2017). Preparation of Fe(II)–Al layered double hydroxides: Application to the adsorption/reduction of chromium. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 516, 362–374. https://doi.org/10.1016/j.colsurfa.2016.12.053
  6. Hu, J. P., Sheng, H., Deng, Q., Ma, Q., Liu, J., Wu, X. W., Liu, J. J., & Wu, Y. P. (2020). High-rate layered cathode of lithium-ion batteries through regulating three-dimensional agglomerated structure. Energies, 13(7). https://doi.org/10.3390/en13071602
  7. Hwang, I., Lee, C. W., Kim, J. C., & Yoon, S. (2012). Particle size effect of Ni-rich cathode materials on lithium ion battery performance. Materials Research Bulletin, 47(1), 73–78. https://doi.org/10.1016/j.materresbull.2011.10.002
  8. Jumari, A., Yudha, C. S., Widiyandari, H., & Lestari, A. P. (2020). SiO2/C Composite as a High Capacity Anode Material of LiNi0.8Co0.15Al0.05O2 Battery Derived from Coal Combustion Fly Ash. Applied Science, 10(23), 1–13. https://doi.org/10.3390/app10238428
  9. Kim, C., Park, T.-J., Min, S.-G., Yang, S.-B., & Son, J.-T. (2014). Effects of iron doping at 55 °C on LiNi0.85Co0.10Al0.05O2. Journal of the Korean Physical Society, 65(2), 243–247. https://doi.org/10.3938/jkps.65.243
  10. Lagouir, M., Badri, A., & Sayouti, Y. (2021). Multi-objective optimization dispatch based energy management of a microgrid running under grid connected and standalone operation mode. International Journal of Renewable Energy Development, 10(2), 333–343. https://doi.org/10.14710/ijred.2021.34656
  11. Liu, C., Qian, K., Lei, D., Li, B., Kang, F., & He, Y.-B. (2018). Deterioration mechanism of LiNi0.8Co0.15Al0.05O2/graphite–SiOx power batteries under high temperature and discharge cycling conditions. Journal of Materials Chemistry A, 6(1), 65–72. https://doi.org/10.1039/C7TA08703A
  12. Liu, X., Zhang, Q., Zhu, Y., Zhao, J., Chen, J., Ye, H., Wei, H., & Liu, Z. (2022). Trash to Treasure: Harmful Fly Ash Derived Silicon Nanoparticles for Enhanced Lithium-Ion Batteries. Silicon, 14(13), 7983–7990. https://doi.org/10.1007/s12633-021-01528-z
  13. Lv, Y., Cheng, X., Qiang, W., & Huang, B. (2020). Improved Electrochemical Performances of Ni-rich LiNi0.83Co0.12Mn0.05O2 by Mg-doping. Journal of Power Sources, 450(January), 227718. https://doi.org/10.1016/j.jpowsour.2020.227718
  14. Ma, Y., Zhu, Y., Yu, Y., Mei, T., Xing, Z., Zhang, X., & Qian, Y. (2012). Low temperature synthesis of α-LiFeo 2 nanoparticles and its behavior as cathode materials for Li-ion batteries. International Journal of Electrochemical Science, 7(5), 4657–4662. https://doi.org/10.1016/s1452-3981(23)19570-8
  15. Mathapati, M., Amate, K., Durga Prasad, C., Jayavardhana, M. L., & Hemanth Raju, T. (2021). A review on fly ash utilization. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2021.09.106
  16. Mopoung, S., Sitthikhankaew, R., & Mingmoon, N. (2021). Preparation of anode material for lithium battery from activated carbon. International Journal of Renewable Energy Development, 10(1), 91–96. https://doi.org/10.14710/ijred.2021.32997
  17. Mu, G., Agrawal, S., Sittisomwong, P., & Bai, P. (2022). Impacts of negative to positive capacities ratios on the performance of next-generation lithium-ion batteries. Electrochimica Acta, 406. https://doi.org/10.1016/j.electacta.2022.139878
  18. Muzayanha, S. U., Yudha, C. S., Nur, A., Widiyandari, H., Haerudin, H., Nilasary, H., Fathoni, F., & Purwanto, A. (2019). A fast metals recovery method for the synthesis of lithium nickel cobalt aluminum oxide material from cathode waste. Metals, 9(5). https://doi.org/10.3390/met9050615
  19. Nisa, S. S., Nurohmah, A. R., Yudha, C. S., Nilasary, H., Nursukatmo, H., Dyartanti, E. R., & Purwanto, A. (2021). Utilization of Spent Nickel Catalyst as Raw Material for Ni-Rich Cathode Material. Jurnal Presipitasi : Media Komunikasi Dan Pengembangan Teknik Lingkungan, 18(2), 349–357. https://doi.org/10.14710/presipitasi.v18i2.349-357
  20. Nisa, S. S., Rahmawati, M., Yudha, C. S., Nilasary, H., Nursukatmo, H., Oktaviano, H. S., Muzayanha, S. U., & Purwanto, A. (2022). Fast Approach to Obtain Layered Transition-Metal Cathode Material for Rechargeable Batteries. Batteries, 8(1). https://doi.org/10.3390/batteries8010004
  21. Nurohmah, A. R., Yudha, C. S., Rahmawati, M., Nisa, S. F. S., Jumari, A., Widiyandari, H., & Purwanto, A. (2021). Structural and electrochemical analysis of iron doping in lini0.6-xmn0.2co0.2fexo2 battery. Evergreen, 8(1), 82–88. https://doi.org/10.5109/4372263
  22. Oh, H. J., Jo, C. H., Yoon, C. S., Yashiro, H., Kim, S. J., Passerini, S., Sun, Y. K., & Myung, S. T. (2016). Nickel oxalate dihydrate nanorods attached to reduced graphene oxide sheets as a high-capacity anode for rechargeable lithium batteries. NPG Asia Materials, 8(5). https://doi.org/10.1038/am.2016.59
  23. Park, S., Jo, C., Kim, H. J., Kim, S., Myung, S. T., Kang, H. K., Kim, H., Song, J., Yu, J., & Kwon, K. (2020). Understanding the role of trace amount of Fe incorporated in Ni-rich Li[Ni1-x-yCoxMny]O2 cathode material. Journal of Alloys and Compounds, 835. https://doi.org/10.1016/j.jallcom.2020.155342
  24. Pathan, T. S., Rashid, M., Walker, M., Widanage, W. D., & Kendrick, E. (2019). Active formation of Li-ion batteries and its effect on cycle life. JPhys Energy, 1(4). https://doi.org/10.1088/2515-7655/ab2e92
  25. Purwanto, A., Yudha, C. S., Ubaidillah, U., Widiyandari, H., & Ogi, T. (2018). NCA cathode material : synthesis methods and performance enhancement efforts NCA cathode material : synthesis methods and performance enhancement efforts. Materials Research Express, 5(12), 122001. https://doi.org/10.1088/2053-1591/aae167
  26. Rahmawati, F., Alaih, I. S., Rosalin, A. W., Nurcahyo, I. F., Nursukatmo, H., Nilasary, H., Oktaviano, H. S., Raihan, E., Muzayanha, S. U., & Handaka, M. F. A. (2024). A dry cold sintering to Ta doped-lithium lanthanum zirconate solid electrolyte for all-solid-state lithium metal battery. International Journal of Renewable Energy Development, 13(5), 959. https://doi.org/10.61435/ijred.2024.60351
  27. Seenivasan, M., Jeyakumar, J., Wu, Y. S., Pham, Q. T., Chern, C. S., Hwang, B. J., & Yang, C. C. (2022). Bifunctional coating layer on Ni-rich cathode materials to enhance electrochemical performance and thermal stability in lithium-ion batteries. Composites Part B: Engineering, 242. https://doi.org/10.1016/j.compositesb.2022.110083
  28. Sudaryanto, Salsabila, N., Sari, P. A. K., Fachrudin, A. C., Salsabila, A. A., Nursanto, E. B., Priyono, S., Jodi, H., & Gumelar, M. D. (2024). Comparison of lithium sources on the electrochemical performance of LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries. International Journal of Renewable Energy Development, 13(3), 448–456. https://doi.org/10.61435/ijred.2024.59662
  29. Thapa, A. K., Lavery, B. W., Hona, R. K., Sapkota, N., Kalutara Koralalage, M., Adeniran, A., Ajayi, B. P., Zain, M. A., Wang, H., Druffel, T., Jasinski, J. B., Sumanasekera, G. U., Sunkara, M. K., & Yoshio, M. (2022). Mn-Rich NMC Cathode for Lithium-Ion Batteries at High-Voltage Operation. Energies, 15(22). https://doi.org/10.3390/en15228357
  30. Wan, D. Y., Fan, Z. Y., Dong, Y. X., Baasanjav, E., Jun, H., Jin, B., Jin, E. M., & Jeong, S. M. (2018). Effect of Metal ( Mn , Ti ) Doping on NCA Cathode Materials for Lithium Ion Batteries. Journal of Nano Materials, 2018, 082502, https://doi.org/10.1155/2018/8082502
  31. Wang, J., Zhou, G., Hou, S., Wei, S., Li, Y., Dong, S., Yan, X., Zhao, D., & Hou, X. (2023). A novel method to preparing LiNi0.8Co0.15Al0.05O2 cathode materials using nano-sized Al(OH)3. Materials Letters, 335. https://doi.org/10.1016/j.matlet.2023.133816
  32. Xie, H., Du, K., Hu, G., Duan, J., Peng, Z., Zhang, Z., & Cao, Y. (2015). Synthesis of LiNi0.8Co0.15Al0.05O2with 5-sulfosalicylic acid as a chelating agent and its electrochemical properties. Journal of Materials Chemistry A, 3(40), 20236–20243. https://doi.org/10.1039/c5ta05266a
  33. Xie, H., Hu, G., Du*, K., Peng, Z., & Cao, Y. (2016). An improved continuous co-precipitation method to synthesize LiNi0.8Al0.05O2 cathode material. Journal of Alloys and Compounds, 666, 84–87. https://doi.org/10.1016/j.jallcom.2016.01.064
  34. Yudha, C. S., Apriliyani, E., Paramitha, T., Suci, W. G., & Gustiana, H. S. E. A. (2022). Recovery of Valuable Metals from Fly Ash via Hydrometallurgy Method for Li-ion Battery Anode Material. JKPK (Jurnal Kimia Dan Pendidikan Kimia), 7(3), 265. https://doi.org/10.20961/jkpk.v7i3.64740
  35. Yudha, C. S., Hutama, A. P., Rahmawati, M., & Arinawati, M. (2022). Production of nickel-rich LiNi0.89Co0.08Al0.03O2 cathode material for high capacity NCA / graphite secondary battery fabrication. Open Engineering, 12, 501–510. https://doi.org/10.1515/eng-2022-0051
  36. Zeng, T., & Zhang, C. (2020). An effective way of co-precipitating Ni2+, Mn2+ and Co2+ by using ammonium oxalate as precipitant for Ni-rich Li-ion batteries cathode. Journal of Materials Science, 55(25), 11535–11544. https://doi.org/10.1007/s10853-020-04753-w
  37. Zhang, H., Wang, X., Naveed, A., Zeng, T., Zhang, X., Shi, H., Su, M., Dou, A., Zhou, Y., & Liu, Y. (2022). Comparison of structural and electrochemical properties of LiNi0.8Co0.15Al0.05O2 with Li site doping by different cations. Applied Surface Science, 599. https://doi.org/10.1016/j.apsusc.2022.153933
  38. Zhang, Y., Li, M., Liu, D., Hou, X., Zou, J., Ma, X., Shang, F., & Wang, Z. (2019). Aluminum and iron leaching from power plant coal fly ash for preparation of polymeric aluminum ferric chloride. Environmental Technology (United Kingdom), 40(12), 1568–1575. https://doi.org/10.1080/09593330.2018.1426639
  39. Zhu, J., Cao, G., Li, Y., Xi, X., Jin, Z., Xu, B., & Li, W. (2020). Efficient utilisation of rod-like nickel oxalate in lithium-ion batteries: A case of NiO for the anode and LiNiO2 for the cathode. Scripta Materialia, 178(3), 51–56. https://doi.org/10.1016/j.scriptamat.2019.10.051

Last update:

No citation recorded.

Last update: 2025-04-22 03:56:20

No citation recorded.