skip to main content

Combined study to explore planar-mixed dimensional Cs3Bi2I9 solar cells

Solar Energy Research Institute (SERI), Level G Research Complex , Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Received: 11 Sep 2024; Revised: 27 Dec 2024; Accepted: 15 Feb 2024; Available online: 28 Feb 2024; Published: 1 Mar 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
The development of high-efficiency solar cells is of paramount importance for advancing sustainable energy technologies and meeting global energy demands. This study focuses on the optoelectronic performance of FTO/TiO2/Cs3Bi2I9/Spiro-OMeATAD/Ag planar heterojunction solar cells. Through detailed analysis, we investigated various factors such as crystallite size, strain, dislocation density, and their collective influence on the overall performance of the solar cells. Among the fabricated samples, sample A3 exhibited a significant improvement in efficiency, showing a 0.72% enhancement over the others. This increase is attributed to A3's superior crystallite quality, which led to reduced strain and a lower density of dislocations. These properties contribute to minimizing non-radiative recombination losses and enhancing charge carrier mobility, both of which are crucial for maximizing the photovoltaic performance of the device. These factors bring A3 closer to the theoretical Shockley-Queisser  (S-Q) efficiency limit, a benchmark for photovoltaic performance. Further analysis using SCAPS-1D simulations supported these experimental findings, demonstrating the significance of optimizing critical parameters such as the minority carrier lifetime. The simulations revealed that high losses in short-circuit current density (JSC) were a primary limiting factor in performance, emphasizing the need for careful tuning of these parameters to reduce losses. This work highlights the critical role of precise material engineering in developing highly efficient perovskite solar cells. The study not only provides insights into the structural and electronic properties essential for performance enhancement but also underscores the potential of Cs3Bi2I9 as a promising material for photovoltaic applications. The findings offer valuable guidance for the next generation of high-efficiency, low-toxicity, and lead-free perovskite solar cells, aligning with global efforts to transition to clean, renewable energy sources.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
Untitled
Subject
Type Research Instrument
  Download (B)    Indexing metadata
Keywords: Solar cells;Cs3Bi2I9;optoelectronic properties;Shockley-Queisser limit;material engineering

Article Metrics:

  1. Ahamd, F., Lakhtakia, A., & Monk, P. B. (2020). Double-absorber thin-film solar cell with 34% efficiency; https://doi.org/10.1063/5.0017916
  2. Ahmed, S., Akhtaruzzaman, M., Zulhafizhazuan, W., Yusoff, Y., Alnaser, I. A., Karim, M. R., Shahiduzzaman, M., & Sobayel, K. (2023). Theoretical verification of using the Ga-doped ZnO as a charge transport layer in an inorganic perovskite solar cell. Japanese Journal of Applied Physics, 62(9). https://doi.org/10.35848/1347-4065/ACED74
  3. Akhtaruzzaman, M., Shahiduzzaman, M., Amin, N., Muhammad, G., Islam, M. A., Sobayel Bin Rafiq, K., & Sopian, K. (2021). Impact of Ar flow rates on micro-structural properties of WS2 thin film by rf magnetron sputtering. Nanomaterials, 11(7). https://doi.org/10.3390/nano11071635
  4. Aliaghayee, M. (2023). Optimization of the Perovskite Solar Cell Design with Layer Thickness Engineering for Improving the Photovoltaic Response Using SCAPS-1D. Journal of Electronic Materials, 52(4), 2475–2491. https://doi.org/10.1007/S11664-022-10203-X/METRICS
  5. Bai, F., Hu, Y., Hu, Y., Qiu, T., Miao, X., & Zhang, S. (2018). Lead-free, air-stable ultrathin Cs3Bi2I9 perovskite nanosheets for solar cells. Solar Energy Materials and Solar Cells, 184, 15–21. https://doi.org/10.1016/j.solmat.2018.04.032
  6. Basher, M. K., Alam, M. N. E., & Alameh, K. (2021). Design, Development, and Characterization of Low Distortion Advanced Semitransparent Photovoltaic Glass for Buildings Applications. Energies 2021, Vol. 14, Page 3929, 14(13), 3929. https://doi.org/10.3390/EN14133929
  7. Bragg H.W., B.L.W. (1913). Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 88(605), 428–438. https://doi.org/10.1098/rspa.1913.0040
  8. Cheng, H., Feng, Y., Fu, Y., Zheng, Y., Shao, Y., & Bai, Y. (2022). Understanding and minimizing non-radiative recombination losses in perovskite light-emitting diodes. Journal of Materials Chemistry C, 10(37), 13590–13610. https://doi.org/10.1039/D2TC01869A
  9. Debby Coa (2024) Is Perovskite the Future of Solar Energy? https://www.solarctrl.com/blog/is-perovskite-the-future-of-solar-energy/ Accessed on 14 August 2024
  10. Feierabend, M., Morlet, A., Berghäuser, G., & Malic, E. (2017). Impact of strain on the optical fingerprint of monolayer transition-metal dichalcogenides. Physical Review B, 96(4), 045425. https://doi.org/10.1103/PHYSREVB.96.045425/FIGURES/5/MEDIUM
  11. Ghosh, B., Wu, B., Mulmudi, H. K., Guet, C., Weber, K., Sum, T. C., Mhaisalkar, S., & Mathews, N. (2018). Limitations of Cs3Bi2I9 as Lead-Free Photovoltaic Absorber Materials. ACS Applied Materials and Interfaces, 10(41), 35000–35007. https://doi.org/10.1021/acsami.7b14735
  12. Hamukwaya, S. L., Hao, H., Mashingaidze, M. M., Zhong, T., Tang, S., Dong, J., Xing, J., & Liu, H. (2022). Potassium Iodide-Modified Lead-Free Cs3Bi2I9 Perovskites for Enhanced High-Efficiency Solar Cells. Nanomaterials, 12(21). https://doi.org/10.3390/nano12213751
  13. Han, H., Park, J., Nam, S. Y., Kim, K. J., Choi, G. M., Parkin, S. S. P., Jang, H. M., & Irvine, J. T. S. (2019). Lattice strain-enhanced exsolution of nanoparticles in thin films. Nature Communications, 10(1). https://doi.org/10.1038/S41467-019-09395-4
  14. Hartono, N. T. P., Sun, S., Gélvez-Rueda, M. C., Pierone, P. J., Erodici, M. P., Yoo, J., Wei, F., Bawendi, M., Grozema, F. C., Sher, M. J., Buonassisi, T., & Correa-Baena, J. P. (2019). The effect of structural dimensionality on carrier mobility in lead-halide perovskites. Journal of Materials Chemistry A, 7(41), 23949–23957. https://doi.org/10.1039/c9ta05241k
  15. Iftekharuzzaman, I., Ghosh, S., Basher, M. K., Islam, M. A., Das, N., & Nur-E-Alam, M. (2023). Design and Concept of Renewable Energy Driven Auto-Detectable Railway Level Crossing Systems in Bangladesh. Future Transportation, 3(1), 75–91. https://doi.org/10.3390/FUTURETRANSP3010005/S1
  16. Islam, M. A., Rafiq, M. K. S. Bin, Misran, H., Uzzaman, M. A., Techato, K., Muhammad, G., & Amin, N. (2020). Tailoring of the Structural and Optoelectronic Properties of Zinc-Tin-Oxide Thin Films via Oxygenation Process for Solar Cell Application. IEEE Access, 8, 193560–193568. https://doi.org/10.1109/ACCESS.2020.3031894
  17. Islam, M. B., Yanagida, M., Shirai, Y., Nabetani, Y., & Miyano, K. (2017). NiOx Hole Transport Layer for Perovskite Solar Cells with Improved Stability and Reproducibility. ACS Omega, 2(5), 2291–2299. https://doi.org/10.1021/acsomega.7b00538
  18. Johansson, M. B., Philippe, B., Banerjee, A., Phuyal, D., Mukherjee, S., Chakraborty, S., Cameau, M., Zhu, H., Ahuja, R., Boschloo, G., Rensmo, H., & Johansson, E. M. J. (2019). Cesium Bismuth Iodide Solar Cells from Systematic Molar Ratio Variation of CsI and BiI3. Inorganic Chemistry, 58(18), 12040–12052. https://doi.org/10.1021/acs.inorgchem.9b01233
  19. Johansson, M. B., Zhu, H., & Johansson, E. M. J. (2016). Extended Photo-Conversion Spectrum in Low-Toxic Bismuth Halide Perovskite Solar Cells. Journal of Physical Chemistry Letters, 7(17), 3467–3471. https://doi.org/10.1021/acs.jpclett.6b01452
  20. Jung, E. H., Jeon, N. J., Park, E. Y., Moon, C. S., Shin, T. J., Yang, T. Y., Noh, J. H., & Seo, J. (2019). Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 2019 567:7749, 567(7749), 511–515. https://doi.org/10.1038/s41586-019-1036-3
  21. Li, S., Cao, Y. L., Li, W. H., & Bo, Z. S. (2021). A brief review of hole transporting materials commonly used in perovskite solar cells. Rare Metals, 40(10), 2712–2729. https://doi.org/10.1007/S12598-020-01691-Z
  22. Lian, J., Lu, B., Niu, F., Zeng, P., & Zhan, X. (2018). Electron-Transport Materials in Perovskite Solar Cells. In Small Methods (Vol. 2, Issue 10). John Wiley and Sons Inc. https://doi.org/10.1002/smtd.201800082
  23. Liou, J. C., Diao, C. C., Lin, J. J., Chen, Y. L., & Yang, C. F. (2014). Prepare dispersed CIS nano-scale particles and spray coating CIS absorber layers using nano-scale precursors. Nanoscale Research Letters, 9(1), 1. https://doi.org/10.1186/1556-276X-9-1
  24. Max-Planck-Gesellschaft.(2024) https://www.mpg.de/8431287/efficiency_perovskite-solar-cell Accessed 14 August 2024
  25. McGovern, L., Koschany, I., Grimaldi, G., Muscarella, L. A., & Ehrler, B. (2021). Grain Size Influences Activation Energy and Migration Pathways in MAPbBr3Perovskite Solar Cells. Journal of Physical Chemistry Letters, 12(9), 2423–2428. https://doi.org/10.1021/ACS.JPCLETT.1C00205/SUPPL_FILE/JZ1C00205_SI_001.PDF
  26. Mohamad Noh, M. F., Teh, C. H., Daik, R., Lim, E. L., Yap, C. C., Ibrahim, M. A., Ahmad Ludin, N., Mohd Yusoff, A. R. Bin, Jang, J., & Mat Teridi, M. A. (2018). The architecture of the electron transport layer for a perovskite solar cell. In Journal of Materials Chemistry C (Vol. 6, Issue 4, pp. 682–712). Royal Society of Chemistry. https://doi.org/10.1039/c7tc04649a
  27. Morales, M., & Al-Shomar, S. M. (2024). Influence of Post-Annealing Treatment on Some Physical Properties of Cerium Oxide Thin Films Prepared by the Sol–Gel Method. Crystals 2024, Vol. 14, Page 615, 14(7), 615. https://doi.org/10.3390/CRYST14070615
  28. Mosabbir, A. S. M., Sadek, M. S., Mahmood, M., Mofazzal Hosain, M., Sepeai, S., Chelvanathan, P., Sultan, S. M., Sopian, K., Ibrahim, M. A., & Sobayel, K. (2024). Optimizing lead-free Cs2AgBiBr6 double perovskite solar cells: insights from SCAPS and FDTD simulations. Sustainable Energy & Fuels, 8(18), 4311–4323. https://doi.org/10.1039/D4SE00958D
  29. Namatame, M., Yabusaki, M., Watanabe, T., Ogomi, Y., Hayase, S., & Marumoto, K. (2017). Direct observation of dramatically enhanced hole formation in a perovskite-solar-cell material spiro-OMeTAD by Li-TFSI doping. Applied Physics Letters, 110(12). https://doi.org/10.1063/1.4977789
  30. Ng, H. K., Xiang, D., Suwardi, A., Hu, G., Yang, K., Zhao, Y., Liu, T., Cao, Z., Liu, H., Li, S., Cao, J., Zhu, Q., Dong, Z., Tan, C. K. I., Chi, D., Qiu, C. W., Hippalgaonkar, K., Eda, G., Yang, M., & Wu, J. (2022). Improving carrier mobility in two-dimensional semiconductors with rippled materials. Nature Electronics 2022 5:8, 5(8), 489–496. https://doi.org/10.1038/s41928-022-00777-z
  31. Nur-E-Alam, M., Islam, M. A., Kar, Y. B., Kiong, T. S., Misran, H., Khandaker, M. U., Fouad, Y., Soudagar, M. E. M., & Cuce, E. (2024). Anti-solvent materials enhanced structural and optical properties on ambiently fabricated perovskite thin films. Scientific Reports 2024 14:1, 14(1), 1–11. https://doi.org/10.1038/s41598-024-70344-3
  32. Nur-E-Alam, M., Zehad Mostofa, K., Kar Yap, B., Khairul Basher, M., Aminul Islam, M., Vasiliev, M., Soudagar, M. E. M., Das, N., & Sieh Kiong, T. (2024). Machine learning-enhanced all-photovoltaic blended systems for energy-efficient sustainable buildings. Sustainable Energy Technologies and Assessments, 62, 103636. https://doi.org/10.1016/J.SETA.2024.103636
  33. NREL (2024) https://www.nrel.gov/pv/cell-efficiency.html. Accessed 14 August 2024
  34. O, S., G, A., & O, D. (2016). Simulation of the Performance of CdTe/CdS/ZnO Multi- Junction Thin Film Solar Cell. Review of Information Engineering and Applications, 3(1), 1–10. https://doi.org/10.18488/journal.79/2016.3.1/79.1.1.10
  35. Rai, N., Rai, S., Singh, P. K., Lohia, P., & Dwivedi, D. K. (2020). Analysis of various ETL materials for an efficient perovskite solar cell by numerical simulation. Journal of Materials Science: Materials in Electronics, 31(19), 16269–16280. https://doi.org/10.1007/s10854-020-04175-z
  36. Ramli, N. F., Sepeai, S., Rostan, N. F. M., Ludin, N. A., Ibrahim, M. A., Teridi, M. A. M., & Zaidi, S. H. (2017). Model development of monolithic tandem silicon-perovskite solar cell by SCAPS simulation. AIP Conference Proceedings, 1838. https://doi.org/10.1063/1.4982178
  37. Razza, S., Castro-Hermosa, S., Di Carlo, A., & Brown, T. M. (2016). Research Update: Large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology. APL Materials, 4(91508), 091508. https://doi.org/10.1063/1.4962478
  38. Rühle, S. (2016). Tabulated values of the Shockley-Queisser limit for single junction solar cells. Solar Energy, 130, 139–147. https://doi.org/10.1016/j.solener.2016.02.015
  39. Sarkar, P., Niranjan, N. K., Srivastava, A., Tripathy, S. K., Baishnab, K. L., & Chinnaiah, M. C. (2022). Comparative Study on the Role of Different Precursor Salts on Structural, Morphological, and Optoelectronic Characteristics of CH3NH3PbCl3 Perovskite Semiconductor: An Experimental Study. Journal of Electronic Materials, 51(12), 7105–7112. https://doi.org/10.1007/S11664-022-09946-4/METRICS
  40. Sepeai, S., Zulhafizhazuan, W., Leong, C. S., Ludin, N. A., Ibrahim, M. A., Sopian, K., & Zaidi, S. H. (2017). Analisis arus-voltan bagi pengubahsuaian proses fabrikasi sel suria silikon jenis-P ke atas wafer silikon jenis-N. Sains Malaysiana, 46(10), 1943–1949. https://doi.org/10.17576/jsm-2017-4610-33
  41. Thomas Ovenden (2024) The Environmental Impact of Fossil Fuels vs. Renewable Energy: Making the Switch for a Healthier https://www.nfuenergy.co.uk/news/environmental-impact-fossil-fuels-vs-renewable-energy-making-switch-healthier-planet Accessed on 14 August 2024
  42. Waykar, R., Bhorde, A., Nair, S., Pandharkar, S., Gabhale, B., Aher, R., Rondiya, S., Waghmare, A., Doiphode, V., Punde, A., Vairale, P., Prasad, M., & Jadkar, S. (2020). Environmentally stable lead-free cesium bismuth iodide (Cs3Bi2I9) perovskite: Synthesis to solar cell application. Journal of Physics and Chemistry of Solids, 146, 109608. https://doi.org/10.1016/J.JPCS.2020.109608
  43. Yadav, S., Gupta, S. K., & Negi, C. M. S. (2024). Comprehensive Analysis of Lead-Free Perovskite (CsSn0.5Ge0.5I3) Solar Cell: Impact of Active Layer Thickness and Defect Density. Brazilian Journal of Physics, 54(3), 1–9. https://doi.org/10.1007/S13538-024-01444-8/METRICS
  44. Yao, W., Hu, S., Jia, F., Reimers, J. R., Wang, Y., Singh, D. J., & Ren, W. (2022). Lattice strain and band overlap of the thermoelectric composite Mg2Si1-xSnx. Physical Review B, 106(10), 104303. https://doi.org/10.1103/PHYSREVB.106.104303/FIGURES/4/MEDIUM
  45. Yin, X., Guo, Y., Xie, H., Que, W., & Kong, L. B. (2019). Nickel Oxide as Efficient Hole Transport Materials for Perovskite Solar Cells. In Solar RRL (Vol. 3, Issue 5). Wiley-VCH Verlag. https://doi.org/10.1002/solr.201900001
  46. Yu, Y., Xia, J., & Liang, Y. (2022). Basic understanding of perovskite solar cells and passivation mechanism. AIP Advances, 12(5), 55307. https://doi.org/10.1063/5.0058441/2819457
  47. Yun, A. J., Kim, J., Hwang, T., & Park, B. (2019). Origins of Efficient Perovskite Solar Cells with Low-Temperature Processed SnO2 Electron Transport Layer. ACS Applied Energy Materials, 2(5), 3554–3560. https://doi.org/10.1021/ACSAEM.9B00293
  48. Zhang, L., Mao, H., Huang, L., Hu, L., Wang, X., Tan, L., & Chen, Y. (2022). Achieving improved stability and minimal non-radiative recombination loss for over 18% binary organic photovoltaics via versatile interfacial regulation strategy. Science China Chemistry, 65(8), 1623–1633. https://doi.org/10.1007/S11426-022-1300-1/METRICS
  49. Zhang, L., Wang, K., & Zou, B. (2019). Bismuth Halide Perovskite-Like Materials: Current Opportunities and Challenges. ChemSusChem, 12(8), 1612–1630. https://doi.org/10.1002/cssc.201802930
  50. Zhou, X., Wang, T., Liang, X., Wang, F., Xu, Y., Lin, H., Hu, R., & Hu, H. (2023). Long-chain organic molecules enable mixed dimensional perovskite photovoltaics: a brief view. Frontiers in Chemistry, 11. https://doi.org/10.3389/FCHEM.2023.1341935
  51. Zulhafizhazuan, W., Sepeai, S., Leong, C. S., Sopian, K., & Zaidi, S. H. (2017). Analisis prestasi bagi sel suria silikon teringkas ke atas silikon wafer kristal jenis-P. Malaysian Journal of Analytical Sciences, 21(5), 1127–1133. https://doi.org/10.17576/mjas-2017-2105-15

Last update:

No citation recorded.

Last update: 2025-04-24 07:28:56

No citation recorded.