skip to main content

Optimal hydropower potential assessment in semi-arid regions

Hydraulic System Analysis Team (HSAT) Laboratory, Mohammadia School of Engineering, Mohammed V University, Rabat, Morocco

Received: 10 Nov 2024; Revised: 5 May 2025; Accepted: 25 Jun 2025; Available online: 14 Jul 2025; Published: 1 Sep 2025.
Editor(s): Hitesh Panchal
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

While hydropower is a cornerstone of global renewable energy strategies, its development in semi-arid regions remains insufficiently explored. Limited and highly variable water availability often discourages comprehensive assessments of its potential. In particular, run-of-river hydropower, despite its environmental and economic advantages, remains largely underexplored in these contexts due to its sensitivity to flow variability. This study evaluates the theoretical hydropower potential of run-of-river schemes within the semi-arid Grou watershed, a major tributary of the Bouregreg river in Morocco, with a focus on optimizing energy production under dry hydrological conditions. Hydrological modeling was applied using the Soil and Water Assessment Tool (SWAT), enabling the generation of flow-duration curves across the river network. These curves were then used to develop energy-duration curves, allowing for the identification of multiple optimal design flows. Consequently, instead of relying on a single turbine, the study explores the deployment of modular turbines per plant, each tailored to specific flow regimes, thereby expanding the range of exploitable run-of-river hydropower. Results indicate an untapped hydropower potential of approximately 32.4 MW per meter of head, with outputs of 31.5 MW, 783.3 kW, and 98.9 kW for high, moderate, and low flows, respectively. These findings highlight the feasibility of run-of-river hydropower in semi-arid regions and underscore the importance of adaptive turbine systems in enhancing sustainable energy production, specifically in water-scarce environments such as Morocco.

Fulltext View|Download
Keywords: Flow-duration curve; Hydrological modeling; Run-of-river; SWAT; Watershed’s exhaustive hydropower

Article Metrics:

Article Info
Section: Original Research Article
Language : EN
  1. Alcalá, G., Grisales-Noreña, L.F., Hernandez-Escobedo, Q., Muñoz-Criollo, J.J., & Revuelta-Acosta, J.D. (2021). SHP assessment for a run-of-river (RoR) scheme using a rectangular mesh sweeping approach (MSA) based on GIS. Energies, 14(11), 3095. https://doi.org/10.3390/en14113095
  2. Alduchov, O.A., & Eskridge, R.E. (1996). Improved Magnus form approximation of saturation vapor pressure. Journal of Applied Meteorology, 35(4), 601–609. https://doi.org/10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO;2
  3. Amougou, C. B., Tsuanyo, D., Fioriti, D., Kenfack, J., Aziz, A., & Abiama, P. E. (2022). LCOE-Based Optimization for the Design of Small Run-of-River Hydropower Plants. Energies, 15(20), 7507. https://doi.org/10.3390/en15207507
  4. Arnold, J.G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., Santhi, C., Harmel, R. D., van Griensven, A., Van Liew, M. W., Kannan, N., & Jha, M. K. (2012). SWAT: Model use, calibration, and validation. Transactions of the ASABE, 55(4), 1491–1508. https://doi.org/10.13031/2013.42256
  5. Arnold, J.G., Srinivasan, R., Muttiah, R.S., & Williams, J.R. (1998). Large area hydrologic modeling and assessment Part 1, model development. Journal of the American Water Resources Association, 34(1), 73-89
  6. Bejarano, M. D., Sordo-Ward, A., Gabriel-Martin, I., & Garrote, L. (2019). Tradeoff between economic and environmental costs and benefits of hydropower production at run-of-river-diversion schemes under different environmental flows scenarios. Journal of Hydrology, 572, 790–804. https://doi.org/10.1016/J.JHYDROL.2019.03.048
  7. Bhattarai, R., Mishra, B. K., Bhattarai, D., Khatiwada, D., Kumar, P. & Meraj, G. (2024). Assessing Hydropower Potential in Nepal’s Sunkoshi River Basin: An Integrated GIS and SWAT Hydrological Modeling Approach. Scientifica, 2024. https://doi.org/10.1155/2024/1007081
  8. Blum, A.G., Archfield, S.A., & Vogel, R.M. (2017). On the probability distribution of daily streamflow in the United States. Hydrology and Earth System Sciences, 21(6), 3093–3103. https://doi.org/10.5194/hess-21-3093-2017
  9. CARD, ISU. (2023). SWAT literature database for peer-reviewed journal articles. https://www.card.iastate.edu/swat_articles/. Accessed on 15 Mai 2025
  10. Cherrad, B. (1997). Le bassin versant de l’oued Grou (plateau central marocain): étude hydro-climatologique. PhD thesis. Paul Verlaine University
  11. Dhaubanjar, S., Lutz, A. F., Pradhananga, S., Smolenaars, W., Khanal, S., Biemans, H., Nepal, S., Ludwig, F., Shrestha, A. B., & Immerzeel, W. W. (2024). From theoretical to sustainable potential for run-of-river hydropower development in the upper Indus basin. Applied Energy, 357, 122372. https://doi.org/10.1016/j.apenergy.2023.122372
  12. Dilnesa, W. (2022). GIS and hydrological model-based hydropower potential assessments of Temcha watershed. International Journal of Environment and Geoinformatics, 9(1), 97-101. https://doi.org/10.30897/ijegeo.783157
  13. El Hafdaoui, H., Khallaayoun, A & Al-Majeed, S. (2025). Renewable Energies in Morocco: A comprehensive review and analysis of current status, policy framework, and prospective potential. Energy Conversion and Management X. 26, 100967. https://doi.org/10.1016/j.ecmx.2025.100967
  14. ESMAP (2021) Assessing and Mapping Renewable Energy Resources, 2nd edn. World Bank, Washington, DC
  15. ESRI. (2013). World Countries Generalized. https://hub.arcgis.com/maps/esri::world-countries-generalized Accessed on 2 September 2024
  16. FAO. (1971-1981). FAO-UNESCO Soil Map of the World. https://data.apps.fao.org/map/catalog/srv/eng/catalog.search#/metadata/446ed430-8383-11db-b9b2-000d939bc5d8
  17. Garcia, X., Estrada, L., Llorente, O., & Acuña, V. (2024). Assessing small hydropower viability in water-scarce regions: environmental flow and climate change impacts using a SWAT+ based tool. Environmental Sciences Europe, 36, 126. https://doi.org/10.1186/s12302-024-00938-1
  18. Golgojan, A.D., White, C.J. & Bertram, D. (2025). An assessment of run of river hydropower potential in Great Britain. Proceedings of the Institution of Civil Engineers - Water Management, 178(1), 42-61. https://doi.org/10.1680/jwama.23.00056
  19. Harrell, F.E., & Davis, C.E. (1982). A new distribution-free quantile estimator. Biometrika, 69(3), 635–640. https://doi.org/10.2307/2335999
  20. Hedger, R.D., Kenawi M.S., Sundt-Hansen, L.E., Bakken, T.H., & Sandercock, B.K. (2025). Evaluating environmental impacts of micro, mini and small hydropower plants in Norway. Journal of Environmental Management, 373, 123521. https://doi.org/10.1016/j.jenvman.2024.123521
  21. Ibrahim, M., Imam, Y., & Ghanem, A. (2019). Optimal planning and design of run-of-river hydroelectric power projects. Renewable Energy, 141, 858-873. https://doi.org/10.1016/j.renene.2019.04.009
  22. IEA. (2021). Hydropower special market report. IEA, Paris
  23. IRENA. (2023a), Renewable energy benefits: Leveraging local capacity for small-scale hydropower, IRENA, Abu Dhabi
  24. IRENA. (2023b). The changing role of hydropower: Challenges and opportunities. IRENA, Abu Dhabi
  25. IRENA. (2024). Renewable energy statistics 2024. IRENA, Abu Dhabi
  26. Janjić, J., & Tadić, L. (2023). Fields of application of SWAT hydrological model—A review. Earth, 4(2), 331-344. https://doi.org/10.3390/earth4020018
  27. JAXA. (2014). ALOS PALSAR Digital Elevation Model. https://doi.org/10.5067/Z97HFCNKR6VA Accessed on 24 October 2023
  28. Kalin, L., Isik, S., Schoonover, J.E., & Lockaby, B.G. (2010). Predicting water quality in unmonitored watersheds using artificial neural networks. Journal of Environmental Quality, 39(4), 1429–1440. https://doi.org/10.2134/jeq2009.0441
  29. Kamran, M. (2022). Energy sources and technologies. In: Fundamentals of Smart Grid Systems. 1st edn. Academic Press, Amsterdam. Chapter 2, pp. 23-69. https://doi.org/10.1016/B978-0-323-99560-3.00010-7
  30. Karra, K., Kontgis, C., Statman-Weil, Z., Mazzariello, J.C., Mathis, M.M., & Brumby, S.P. (2021). Global land use/land cover with Sentinel 2 and deep learning. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, 4704-4707. https://doi.org/10.1109/IGARSS47720.2021.9553499
  31. Killingtveit, Å. (2020). Hydroelectric Power. In: Letcher, T. M. (ed.), Future Energy: Improved, Sustainable and Clean Options for Our Planet. 3rd edn. Elsevier, Amsterdam. Chapter 15, pp. 315–330. https://doi.org/10.1016/B978-0-08-102886-5.00015-3
  32. Kuriqi, A., Pinheiro, A., Sordo-Ward, A., Bejarano, M. & Garrote, L. (2021). Ecological impacts of run-of-river hydropower plants—Current status and future prospects on the brink of energy transition. Renewable and Sustainable Energy Reviews, 142. https://doi.org/10.1016/j.rser.2021.110833
  33. Lamontagne, J. R., Barber, C. A., & Vogel, R. M. (2020). Improved Estimators of Model Performance Efficiency for Skewed Hydrologic Data. Water Resources Research, 56(9). https://doi.org/10.1029/2020WR027101
  34. Leong, C., & Yokoo, Y. (2021). A step toward global-scale applicability and transferability of flow duration curve studies: A flow duration curve review (2000–2020). Journal of Hydrology, 603, 126984. https://doi.org/10.1016/j.jhydrol.2021.126984
  35. Magaju, D., Cattapan, A., & Franca, M. (2020). Identification of run-of-river hydropower investments in data scarce regions using global data. Energy for Sustainable Development, 58, 30-41. https://doi.org/10.1016/j.esd.2020.07.001
  36. Malhan, P., & Mittal, M. (2021). Evaluation of different statistical techniques for developing cost correlations of micro hydropower plants. Sustainable Energy Technologies and Assessments, 43, 100904. https://doi.org/10.1016/j.seta.2020.100904
  37. Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., & Veith, T.L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50, 885-900. https://doi.org/10.13031/2013.23153
  38. Moshe, A., & Tegegne, G. (2022). Assessment of run-of-river hydropower potential in the data-scarce region, Omo-Gibe Basin, Ethiopia. International Journal of Energy and Water Resources, 6, 531–542. https://doi.org/10.1007/s42108-022-00192-2
  39. Muñoz Sabater, J. (2019). ERA5-Land hourly data from 1950 to present. Copernicus Climate Change Service (C3S), Climate Data Store (CDS). https://doi.org/10.24381/cds.e2161bac . Accessed on 15 October 2023
  40. Nash, J.E., & Sutcliffe, J.V. (1970). River flow forecasting through conceptual model. part 1—A discussion of principles. Journal of Hydrology, 10(3), 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  41. Natural Earth. (2009). Cross blended hypso with relief, water, drains, and ocean bottom. https://www.naturalearthdata.com/downloads/10m-cross-blend-hypso/cross-blended-hypso-with-relief-water-drains-and-ocean-bottom/ . Accessed on 2 September 2024
  42. Nedaei, M., & Walsh, P.R. (2022). Technical performance evaluation and optimization of a run-of-river hydropower facility. Renewable Energy, 182, 343-362. https://doi.org/10.1016/j.renene.2021.10.021
  43. Ndhlovu, G.Z., & Woyessa, Y.E. (2022). Streamflow Analysis in Data-Scarce Kabompo River Basin, Southern Africa, for the Potential of Small Hydropower Projects under Changing Climate. Hydrology, 9(8). https://doi.org/10.3390/hydrology9080149
  44. Pranoto, B., Hartulistiyoso, E., Aidi, M.N., Sutrisno, D., Nahib, I., Purwono, N., Hudayat, N., Rais, A.F., & Rahmila, Y.I. (2024). Assessing the sustainability of small hydropower sites in the Citarum Watershed, Indonesia employing CA-Markov and SWAT models. Water Supply, 24(9), 3253–3268. https://doi.org/10.2166/ws.2024.209
  45. Sarigil, G., Cavus, Y., Aksoy, H. & Eris, E. (2024). Frequency curves of high and low flows in intermittent river basins for hydrological analysis and hydraulic design. Stochastic Environmental Research and Risk Assessment, 38, 3079–3092. https://doi.org/10.1007/s00477-024-02732-0
  46. Searcy, J.K. (1959). Flow duration curves. Manual of Hydrology: Part 2. Low-Flow Techniques. U.S. Government Printing Office, Washington, D.C
  47. Searcy, J.K., Hardison, C.H., & Langbein, W.B. (1960). Double mass curves. Manual of Hydrology: Part 1. General Surface Water Techniques. U.S. Government Printing Office, Washington, D.C
  48. Shrestha, J.P., Pahlow, M., & Cochrane, T.A. (2020). Development of a SWAT hydropower operation routine and its application to assessing hydrological alterations in the Mekong. Water, 12(8), 2193. https://doi.org/10.3390/w12082193
  49. Skoulikaris, C. (2021). Run-Of-River Small Hydropower Plants as Hydro-Resilience Assets against Climate Change. Sustainability, 13(4), 14001. https://doi.org/10.3390/su132414001
  50. SWAT (Version 2012.10.5.24) (2012). Texas A&M University, Texas A&M AgriLife Research, USDA. Available at: https://swat.tamu.edu/software/arcswat/
  51. SWAT-CUP (Version 2019). (2007). Water Weather Energy Ecosystem. Available at: https://www.2w2e.com/home/SwatCup
  52. Tan, M. L., Gassman, P. W., Yang, X., & Haywood, J. (2020). A review of SWAT applications, performance and future needs for simulation of hydro-climatic extremes. Advances in Water Resources, 143, 103662. https://doi.org/10.1016/j.advwatres.2020.103662
  53. Thakur, C., Teutschbein, C., Kasiviswanathan, K. S., & Soundharajan, B.-S. (2024). Mitigating El Niño impacts on hydro-energy vulnerability through identifying resilient run-of-river small hydropower sites. Journal of Hydrology: Regional Studies, 51, 101622. https://doi.org/10.1016/j.ejrh.2023.101622
  54. Tsuanyo, D., Amougou, B., Aziz, A., Nnomo, B., Fioriti, D., & Kenfack, J. (2023). Design models for small run-of-river hydropower plants: a review. Sustainable Energy Research, 10(3). https://doi.org/10.1186/s40807-023-00072-1
  55. Tzoraki, O. (2020). Operating small hydropower plants in Greece under intermittent flow uncertainty: The case of Tsiknias River (Lesvos). Challenges, 11(2),17. https://doi.org/10.3390/challe11020017
  56. UNIDO & ICSHP (2022) World Small Hydropower Development Report 2022. United Nations Industrial Development Organization, Vienna, Austria; International Center on Small Hydro Power, Hangzhou, China
  57. Védie, H-L. (2020). Renewable energy in Morocco: A reign-long project. https://www.policycenter.ma/publications/renewable-energy-morocco-reign-long-project . Accessed on 23 July 2024
  58. Vogel, R.M., & Fennessey, N.M. (1994). Flow duration curves I: New interpretation and confidence intervals. Journal of Water Resources Planning and Management, 120(4), 485-504. https://doi.org/10.1061/(ASCE)0733
  59. Wangchuk, J., Banihashemi, S., Abbasianjahromi, H. & Antwi-Afari, M.F. (2024). Building Information Modelling in Hydropower Infrastructures: Design, Engineering and Management Perspectives. Infrastructures, 9(7), 98. https://doi.org/10.3390/infrastructures9070098

Last update:

No citation recorded.

Last update: 2025-09-09 17:27:45

No citation recorded.