skip to main content

Effect of electrode annealing to the performance of novel 3D-printed floating microbial fuel cell for polluted surface water remediation

1School of Chemical, Biological. and Materials Engineering and Sciences, Mapua University, Manila, Philippines

2School Graduate Studies, Mapua University, Manila, Philippines

3Center for Renewable Bioenergy Research, Mapua University, Manila, Philippines

Received: 19 Mar 2025; Revised: 17 Jun 2025; Accepted: 26 Jul 2025; Available online: 19 Aug 2025; Published: 1 Sep 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Microbial fuel cells (MFCs) produce electricity by harnessing the electrons generated from the biochemical reactions of bacteria in wastewater. In this study, the performance of a novel 3D-printed floating microbial fuel cell (MFC) design was investigated. The design utilized protopasta conductive polylactic acid (PLA) for the electrodes and ESUN non-conductive PLA+ for the separator. The electrodes were annealed, and its effects on the electrodes' resistances and peak proton transfer rate were investigated. After annealing both electrodes, the resistance and peak proton transfer values dropped. The average current and voltage generation were also examined, and the results showed that the annealed set showed lower values of both voltage and current compared to the non-annealed set. Stacking studies were also done, and the configuration that exhibited the largest power and power density was 8P for both annealed and non-annealed sets. The maximum power density obtained by the non-annealed design is 7.195 µW/m2, 21.81 µW/m2, and 26.74 µW/m2 for IND, 3S4P, and 4P3S, respectively. For the annealed set, the maximum power densities are 1.059 µW/m2, 24.03 µW/m2, and 24.09 µW/m2 for IND, 3S4P, and 4P3S, respectively. Lastly, the COD reduction efficiency of the design is 78.57% and 79.17% for the non-annealed and annealed sets, respectively. The results of this study prove that 3D-printing technology can be a possible option for the manufacturing and improvement of future MFC studies. The study verified that annealing reduced the performance of the MFC mainly because of the design where its electrodes are also acting as the chambers.

Fulltext View|Download
Keywords: 3D-printing; floating MFCs; annealing; performance evaluation; electrochemistry

Article Metrics:

Article Info
Section: Original Research Article
Language : EN
  1. Abhishek, A., Deb, S. D., Jha, R. K., Sinha, R., & Jha, K. (2025). Ensemble learning using Gompertz function for leukemia classification. Biomedical Signal Processing and Control, 100, 106925. https://doi.org/10.1016/J.BSPC.2024.106925
  2. Abrevaya, X. C., Sacco, N. J., Bonetto, M. C., Hilding-Ohlsson, A., & Cortón, E. (2015). Analytical applications of microbial fuel cells. Part I: Biochemical oxygen demand. Biosensors and Bioelectronics, 63, 580–590. https://doi.org/10.1016/J.BIOS.2014.04.034
  3. Arkin, A., Li, Z., & Zhou, X. (2023). Enhanced power generation with disordered porous carbon-modified foam iron–nickel anode in human urine-driven microbial fuel cell. Electrochimica Acta, 472, 143378. https://doi.org/10.1016/J.ELECTACTA.2023.143378
  4. Banerjee, A., Calay, R. K., Thakur, S., & Mustafa, M. Y. (2025). A study on the impact of electrode and membrane modification in stacked microbial fuel cells for wastewater treatment. Current Research in Biotechnology, 9, 100278. https://doi.org/10.1016/J.CRBIOT.2025.100278
  5. Barkhad, M. S., Abu-Jdayil, B., Mourad, A. H. I., & Iqbal, M. Z. (2020). Thermal insulation and mechanical properties of polylactic acid (PLA) at different processing conditions. Polymers, 12(9), 1–16. https://doi.org/10.3390/POLYM12092091
  6. Bian, B., Shi, D., Cai, X., Hu, M., Guo, Q., Zhang, C., Wang, Q., Sun, A. X., & Yang, J. (2018). 3D printed porous carbon anode for enhanced power generation in microbial fuel cell. Nano Energy, 44(October 2017), 174–180. https://doi.org/10.1016/j.nanoen.2017.11.070
  7. Bian, B., Wang, C., Hu, M., Yang, Z., Cai, X., Shi, D., & Yang, J. (2018). Application of 3D printed porous copper anode in microbial fuel cells. Frontiers in Energy Research, 6(JUN), 1–9. https://doi.org/10.3389/fenrg.2018.00050
  8. C, S., S, K., & R, J. (2025). Optimization modeling and economics assessment on simultaneous struvite and bioelectricity production from waste nutrient solution in the microbial fuel cell. Biochemical Engineering Journal, 218, 109705. https://doi.org/10.1016/J.BEJ.2025.109705
  9. Chandra, S., Pandit, S., Roy, A., Rab, S. O., Roy, A. K., Saeed, M., Kumar, A., Sharma, K., Ranjan, N., & Raj, S. (2025). Bioenergy recovery from jackfruit waste via biohydrogen production through dark fermentation and power generation through stacked microbial fuel cells. International Journal of Hydrogen Energy, 102, 845–855. https://doi.org/10.1016/J.IJHYDENE.2025.01.044
  10. Chua, M. A. M., De Los Santos, A. J. T., & Pamintuan, K. R. S. (2023). On-Site Stacking Efficiency Performance of a Novel Full-3D-Printed Plant Microbial Fuel Cell Electrode Assembly. Springer Proceedings in Earth and Environmental Sciences, 121–133. https://doi.org/10.1007/978-3-031-27803-7_11
  11. Constantino, G. P. P., Dolot, J. M. C., & Pamintuan, K. R. S. (2023). Design and Testing of 3D-Printed Stackable Plant-Microbial Fuel Cells for Field Applications. International Journal of Renewable Energy Development, 12(2), 409–418. https://doi.org/10.14710/ijred.2023.44872
  12. Estrada-Arriaga, E. B., Guillen-Alonso, Y., Morales-Morales, C., García-Sánchez, L., Bahena-Bahena, E. O., Guadarrama-Pérez, O., & Loyola-Morales, F. (2017). Performance of air-cathode stacked microbial fuel cells systems for wastewater treatment and electricity production. Water Science and Technology, 76(3), 683–693. https://doi.org/10.2166/wst.2017.253
  13. Hadiyanto, H., Christwardana, M., & da Costa, C. (2023). Electrogenic and biomass production capabilities of a Microalgae–Microbial fuel cell (MMFC) system using tapioca wastewater and Spirulina platensis for COD reduction. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 45(2), 3409–3420. https://doi.org/10.1080/15567036.2019.1668085
  14. He, Y., Yang, J., Fu, Q., Li, J., Zhang, L., Zhu, X., & Liao, Q. (2021). Structure design of 3D hierarchical porous anode for high performance microbial fuel cells: From macro-to micro-scale. Journal of Power Sources, 516, 230687. https://doi.org/10.1016/J.JPOWSOUR.2021.230687
  15. Islam, A. K. M. K., Dunlop, P. S., Bhattacharya, G., Mokim, M., Hewitt, N. J., Huang, Y., Gogulancea, V., Zhang, K., & Brandoni, C. (2023). Comparative performance of sustainable anode materials in microbial fuel cells (MFCs) for electricity generation from wastewater. Results in Engineering, 20, 101385. https://doi.org/10.1016/J.RINENG.2023.101385
  16. Izanloo, M., Aslani, A., & Zahedi, R. (2022). Development of a Machine learning assessment method for renewable energy investment decision making. Applied Energy, 327(February), 120096. https://doi.org/10.1016/j.apenergy.2022.120096
  17. Jadhav, D. A., Pandit, S., Sonawane, J. M., Gupta, P. K., Prasad, R., & Chendake, A. D. (2021). Effect of membrane biofouling on the performance of microbial electrochemical cells and mitigation strategies. Bioresource Technology Reports, 15, 100822. https://doi.org/10.1016/J.BITEB.2021.100822
  18. Kim, B., Mohan, S. V., Fapyane, D., & Chang, I. S. (2020). Controlling Voltage Reversal in Microbial Fuel Cells. Trends in Biotechnology, 38(6), 667–678. https://doi.org/10.1016/J.TIBTECH.2019.12.007
  19. Kimura, Y., Magdaluyo, G. A., & Pamintuan, K. R. (2023). Stack Development and Power Generation Efficiency Analysis of 3D-Printed Plant Microbial Fuel Cells Growing Mung Beans (Vigna Radiata). 2023 International Conference on Power and Renewable Energy Engineering (PREE), 32–37. https://doi.org/10.1109/PREE57903.2023.10370177
  20. Kumar, V., & Singamneni, S. (2025). Facile polymer-based monolithic microbial fuel cells. Renewable Energy, 245, 122848. https://doi.org/10.1016/J.RENENE.2025.122848
  21. Malik, S., Kishore, S., Dhasmana, A., Kumari, P., Mitra, T., Chaudhary, V., Kumari, R., Bora, J., Ranjan, A., Minkina, T., & Rajput, V. D. (2023). A Perspective Review on Microbial Fuel Cells in Treatment and Product Recovery from Wastewater. Water (Switzerland), 15(2). https://doi.org/10.3390/w15020316
  22. Malinis, M. P. D., Velasco, H. J. F., & Pamintuan, K. R. S. (2023). Performance evaluation of the novel 3D-printed aquatic plant-microbial fuel cell assembly with Eichhornia crassipes. International Journal of Renewable Energy Development, 12(5), 942–951. https://doi.org/10.14710/ijred.2023.53222
  23. Mostafa, A. E. A., Emadi, R., Shirali, D., Khodaei, M., Emadi, H., & Saboori, A. (2025). Printed polylactic acid/akermanite composite scaffolds for bone tissue engineering; development and surface modification. International Journal of Biological Macromolecules, 284, 138097. https://doi.org/10.1016/J.IJBIOMAC.2024.138097
  24. Obileke, K. C., Onyeaka, H., Meyer, E. L., & Nwokolo, N. (2021). Microbial fuel cells, a renewable energy technology for bio-electricity generation: A mini-review. Electrochemistry Communications, 125, 107003. https://doi.org/10.1016/j.elecom.2021.107003
  25. Ojha, R., & Pradhan, D. (2025). The potential of microbial fuel cell for converting waste to energy: An overview. Sustainable Chemistry for the Environment, 9, 100196. https://doi.org/10.1016/J.SCENV.2024.100196
  26. Opoku, P. A., Shaowei, X., & Jingyu, H. (2025). Bioenergy generation, organic matter, and simultaneous nitrogen and phosphorus removal in comparative pyrite and graphite-based constructed wetland-microbial fuel cells at different anode scales. Journal of Water Process Engineering, 69, 106882. https://doi.org/10.1016/J.JWPE.2024.106882
  27. Pamintuan, K. R. S., Manga, H. O., & Balmes, A. (2024). Development of a 3D-printed spongy electrode design for microbial fuel cell (MFC) using gyroid lattice. International Journal of Renewable Energy Development; 13(3), https://doi.org/10.61435/ijred.2024.58120
  28. Qi, X., Liu, R., Cai, T., Huang, Z., Wang, X., & Wang, X. (2025). Harnessing electroactive microbial community for energy recovery from refining wastewater in microbial fuel cells. International Journal of Hydrogen Energy, 102, 874–886. https://doi.org/10.1016/J.IJHYDENE.2025.01.087
  29. Ramu, S. M., Thulasinathan, B., Gujuluva Hari, D., Bora, A., Jayabalan, T., Mohammed, S. N., Doble, M., Arivalagan, P., & Alagarsamy, A. (2020). Fermentative hydrogen production and bioelectricity generation from food based industrial waste: An integrative approach. Bioresource Technology, 310, 123447. https://doi.org/10.1016/J.BIORTECH.2020.123447
  30. Ren, H., Jiang, C., & Chae, J. (2017). Effect of temperature on a miniaturized microbial fuel cell (MFC). Micro and Nano Systems Letters, 5(1), 3–9. https://doi.org/10.1186/s40486-017-0048-8
  31. Ruscalleda Beylier, M., Balaguer, M. D., Colprim, J., Pellicer-Nàcher, C., Ni, B. J., Smets, B. F., Sun, S. P., & Wang, R. C. (2019). Biological nitrogen removal from domestic wastewater. Comprehensive Biotechnology, 6, 285–296. https://doi.org/10.1016/B978-0-444-64046-8.00360-8
  32. Santos, J. S., Tarek, M., Sikora, M. S., Praserthdam, S., & Praserthdam, P. (2023). Anodized TiO2 nanotubes arrays as microbial fuel cell (MFC) electrodes for wastewater treatment: An overview. Journal of Power Sources, 564, 232872. https://doi.org/10.1016/J.JPOWSOUR.2023.232872
  33. Shadman, P., Shakeri, A., & Zinadini, S. (2024). Improving MFC efficiency in power generation and COD removal by using protic ionic liquid in MWCNT-CS-2-aminothiazole-SO3H nanoparticle-infused sulfonated PES. Energy Conversion and Management, 301, 118049. https://doi.org/10.1016/J.ENCONMAN.2023.118049
  34. Sharma, M., Das, P. P., Sood, T., Chakraborty, A., & Purkait, M. K. (2022). Reduced graphene oxide incorporated polyvinylidene fluoride/cellulose acetate proton exchange membrane for energy extraction using microbial fuel cells. Journal of Electroanalytical Chemistry, 907, 115890. https://doi.org/10.1016/J.JELECHEM.2021.115890
  35. Stankevich, S., Sevcenko, J., Bulderberga, O., Dutovs, A., Erts, D., Piskunovs, M., Ivanovs, V., Ivanov, V., & Aniskevich, A. (2023). Electrical Resistivity of 3D-Printed Polymer Elements. Polymers, 15(14). https://doi.org/10.3390/polym15142988
  36. Sullivan, E. M., Oh, Y. J., Gerhardt, R. A., Wang, B., & Kalaitzidou, K. (2014). Understanding the effect of polymer crystallinity on the electrical conductivity of exfoliated graphite nanoplatelet/polylactic acid composite films. Journal of Polymer Research, 21(10), 1–9. https://doi.org/10.1007/s10965-014-0563-8
  37. Taufemback, W. F., Hotza, D., Recouvreux, D. de O. S., Calegari, P. C., Pineda-Vásquez, T. G., Antônio, R. V., & Watzko, E. S. (2024). Techniques for obtaining and mathematical modeling of polarization curves in microbial fuel cells. Materials Chemistry and Physics, 315, 128998. https://doi.org/10.1016/J.MATCHEMPHYS.2024.128998
  38. Theodosiou, P., Greenman, J., & Ieropoulos, I. (2019). Towards monolithically printed Mfcs: Development of a 3d-printable membrane electrode assembly (mea). International Journal of Hydrogen Energy, 44(9), 4450–4462. https://doi.org/10.1016/j.ijhydene.2018.12.163
  39. Tirado-Garcia, I., Garcia-Gonzalez, D., Garzon-Hernandez, S., Rusinek, A., Robles, G., Martinez-Tarifa, J. M., & Arias, A. (2021). Conductive 3D printed PLA composites: On the interplay of mechanical, electrical and thermal behaviours. Composite Structures, 265, 113744. https://doi.org/10.1016/J.COMPSTRUCT.2021.113744
  40. Wang, Y., Wen, Q., Chen, Y., Zheng, H., & Wang, S. (2020). Enhanced performance of microbial fuel cell with polyaniline/sodium alginate/carbon brush hydrogel bioanode and removal of COD. Energy, 202, 117780. https://doi.org/10.1016/J.ENERGY.2020.117780
  41. Wu, S., Li, H., Zhou, X., Liang, P., Zhang, X., Jiang, Y., & Huang, X. (2016). A novel pilot-scale stacked microbial fuel cell for efficient electricity generation and wastewater treatment. Water Research, 98, 396–403. https://doi.org/10.1016/J.WATRES.2016.04.043
  42. Yolanda, Y. D., Kim, S., Sohn, W., Shon, H. K., Yang, E., & Lee, S. (2025). Simultaneous nutrient-abundant hydroponic wastewater treatment, direct carbon capture, and bioenergy harvesting using microalgae–microbial fuel cells. Desalination and Water Treatment, 321, 100941. https://doi.org/10.1016/J.DWT.2024.100941
  43. You, Jiseon, Hangbing Fan, J. W. and I. A. I. (2020). Complete Microbial Fuel Cell Fabrication Using Additive. Molecules, 25(3051), 1–12
  44. You, J., Preen, R. J., Bull, L., Greenman, J., & Ieropoulos, I. (2017). 3D printed components of microbial fuel cells: Towards monolithic microbial fuel cell fabrication using additive layer manufacturing. Sustainable Energy Technologies and Assessments, 19, 94–101. https://doi.org/10.1016/j.seta.2016.11.006

Last update:

No citation recorded.

Last update: 2025-10-20 02:29:49

No citation recorded.