skip to main content

Accurate SRT-BGK model evaluation of heatlines visualization and entropy generation of convective heat transfer inside an inclined U cavity receiver as application of solar thermal energy systems

1University of Tunis El-Manar, Faculté des Sciences de Tunis, Département de Physique, Tunis, Tunisia

2Laboratoire d’Energétique et des Transferts Thermique et Massique, El Manar 2092, Tunis, Tunisia

3Institut Préparatoire aux Etudes d’Ingénieurs El-Manar, El-Manar 2092, Tunis, Tunisia.

4 College of Sciences and Humanities of Dawadmi, Shaqra University, Shaqra, Saudi Arabia

View all affiliations
Received: 14 Nov 2024; Revised: 28 Apr 2025; Accepted: 29 May 2025; Available online: 29 Jun 2025; Published: 1 Jul 2025.
Editor(s): Sohail Nadeem
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
The present study analyzes thermal and dynamic fields, heatlines visualization and entropy generation as well as flow energy, flow rate and heat transfer through a natural convection flow inside a top-open cavity receiver. For the case of a horizontal cavity, lower walls are heated at a uniform temperature while vertical walls are treated as adiabatic. The lattice Boltzmann method (LBM) is applied to solve governing equations of the problem. Effects of Rayleigh number (103 ≤ Ra ≤ 105), cavity orientation (0° ≤ θ ≤ 75) and cavity aspect ratio (1 ≤ A ≤ 1.75) on thermo-fluid characteristics of the flow are performed. It was found that current findings computed by LBM are in line with existing literature. Findings reveal that flow patterns and heat transfer are strongly affected by variations of Ra, θ and A. The rise of Ra leads to a change in the orientation of heatlines trajectories with a growth of the stratification degree of entropy generation within the horizontal square cavity. Additionally, an enhancement of the convective heat transfer is detected as increasing Ra accompanied with more energy absorbed by the flow and an intensification of the entrainment phenomenon of fresh air by thermal plumes. For Ra = 5×104, the optimization of heat transfer and total entropy generation demonstrate the existence of a critical angle of the square cavity receiver corresponding to the cavity orientation of θ = 45°.Increasingthe angle θ reduces the stratification degree of heatlines and entropy generation as well as the flow rate. The rise of the geometrical parameter A entrains an increase of thermal gradients with a deceleration of the flow circulation. A decrease of flow rate and convective heat transfer with the growth of the aspect ratio of a horizontal cavity is detected for Ra = 5×104.
Fulltext View|Download
Keywords: U cavity receiver; LBM; heatlines; entropy; flow energy; flow rate; convective heat transfer

Article Metrics:

  1. Admi, Y., Moussaoui, M. A., &Mezrhab, A. (2022). Numerical investigation of convective heat transfer and fluid flow past a three square cylinders controlled by a partition in channel. International Journal of Renewable Energy Development, 11, 766–781; https://doi.org/10.14710/ijred.2022.43790
  2. Arrif, T., Chehhat, A., Abo-Serie, E., & Benchabane, A. (2018). Numerical study of natural convection in square tilted solar cavity considering extended domain. FDMP, 14(4), 223–242; https://doi.org/10.1016/j.jmmm.2017.12.075
  3. Aydin, O., & Yang, J. (2000). Natural convection in enclosure with localized heating from below and symmetrically cooling from sides. International Journal of Numerical Methods for Heat & Fluid Flow, 10(5), 518–529; https://doi.org/10.1108/09615530010338196
  4. Azwadi, C. S. N., Razzaghian, M., Pourtousi, M., &Safdari, A. (2013). Numerical prediction of free convection in an open-ended enclosure using lattice Boltzmann method. International Journal of Mechanical and Materials Engineering, 8(1), 58–62 ; https://doi.org/10.1016/j.ijthermalsci.2009.02.004
  5. Behera, B. R., Chandrakar, V., Mukherjee, A., & Senapati, J. R. (2022). Entropy production analysis and cooling time calculation for an open hemispherical cavity in natural convection. Journal of Process Mechanical Engineering, 237(4). https://doi.org/10.1177/09544089221117142
  6. Bondareva, N. S., Sheremet, M. A., &Öztop, H. F. (2017). Heatline visualization of natural convection in a thick-walled open cavity filled with a nanofluid. International Journal of Heat and Mass Transfer, 109, 175–186; https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.124
  7. Bondareva, N. S., Sheremet, M. A., Öztop, H. F., & Abu-Hamdeh, N. (2016). Heatline visualization of MHD natural convection in an inclined wavy open porous cavity filled with a nanofluid with a local heater. International Journal of Heat and Mass Transfer, 99, 872–881; https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.055
  8. Bopche, S. B., & Kumar, S. (2019). Experimental investigations on thermal performance characteristics of a solar cavity receiver. International Journal of Energy and Environmental Engineering, 10, 463–481; https://doi.org/10.1007/s40095-019-00321-4
  9. Chelia, W., Laouer, A., &Mezaache, E. H. (2024). LBM simulation of free convection heat transfer of Cu/Water nanofluid in inclined cavity with non-uniform heating temperature distribution. Journal of Nanofluids, 13, 553–562; https://doi.org/10.1166/jon.2024.2135
  10. Djebali, R., ElGanaoui, M., &Naffouti, T. (2012). A 2D lattice Boltzmann full analysis of MHD convective heat transfer in saturated porous square enclosure. Computer Modeling in Engineering and Sciences, 84, 499–527; https://doi.org/10.3970/cmes.2012.084.499
  11. Djebali, R., Jaouabi, A., Naffouti, T., &Abboudi, S. (2020). Accurate LBM appraising of pin-fins heat dissipation performance and entropy generation in enclosures as application to power electronic cooling. International Journal of Numerical Methods for Heat and Fluid Flow, 30(2), 742–768; https://www.emerald.com/insight/content/doi/10.1108/hff-01-2019-0006/full/html
  12. Ezzatneshan, E., Salehi, A., &Vaseghnia, H. (2021). Study on forcing schemes in the thermal lattice Boltzmann method for simulation of natural convection flow problems. Journal of Heat Transfer, 50, 7604–7631; https://doi.org/10.1002/htj.22245
  13. Fontana, É., Silva, A. D., & Mariani, V. C. (2011). Natural convection in a partially open square cavity with internal heat source: An analysis of the opening mass flow. International Journal of Heat and Mass Transfer, 54, 1369–1386; https://doi.org/10.1016/j.ijheatmasstransfer.2010.11.053
  14. Ghazouani, K., Skouri, S., Bouadila, S., &Guizani, A. A. (2019). Thermal optimization of solar dish collector for indirect vapor generation. International Journal of Energy Research, 43, 7240–7253; https://doi.org/10.1002/er.4748
  15. Gibanov, N. S., Sheremet, M., Öztop, H. F., & Al-Salem, K. (2017). MHD natural convection and entropy generation in an open cavity having different horizontal porous blocks saturated with a ferrofluid. Journal of Magnetism and Magnetic Materials
  16. Haghshenas, A., Rafati Nasr, M., & Rahimian, M. H. (2010). Numerical simulation of natural convection in an open-ended square cavity filled with porous medium by lattice Boltzmann method. International Communications in Heat and Mass Transfer, 37, 1513–1519; https://doi.org/10.1016/j.icheatmasstransfer.2010.08.006
  17. Hassan, A., Quanfang, C., Abbas, S., Lu, W., &Youming, L. (2021). An experimental investigation on thermal and optical analysis of cylindrical and conical cavity copper tube receivers design for solar dish concentrator. Renewable Energy, 179, 1849–1864; https://doi.org/10.1016/j.renene.2021.07.145
  18. He, X., & Luo, L. S. (1997). Lattice Boltzmann model for the incompressible Navier-Stokes equation. Journal of Statistical Physics, 88, 927–944; https://ui.adsabs.harvard.edu/link_gateway/1997JSP....88..927H/doi: 10.1023/B:JOSS.0000015179.12689.e4
  19. Huang, W., Huang, F., Hu, P., & Chen, Z. (2013). Prediction and optimization of the performance of parabolic solar dish concentrator with sphere receiver using analytical function. Renewable Energy, 53, 18–26; https://doi.org/10.1016/j.renene.2012.10.046
  20. Hussein, A. K., Ashorynejad, H. R., Shikholeslami, M., &Sivasankaran, S. (2014). Lattice Boltzmann simulation of natural convection heat transfer in an open enclosure filled with Cu–water nanofluid in a presence of magnetic field. Nuclear Engineering and Design, 268, 10–17; https://doi.org/10.1016/j.nucengdes.2013.11.072
  21. Islam, S., Bairagi, T., Islam, T., Rana, B. M. J., Reza-E-Rabbi, S. K., & Rahman, M. M. (2022). Heatline visualization in hydromagnetic natural convection flow inside a prismatic heat exchanger using nanofluid. International Journal of Thermofluids, 16, 1–12; https://doi.org/10.1016/j.ijft.2022.100248
  22. Joshi, A., &Deore, E. R. (2021). Performance characteristics of heat loss of the inverted hemispherical solar concentrator receiver. International Journal of Applied Research, 7(3), 221–225; http://dx.doi.org/10.22271/allresearch.2021.v7.i3d.8400
  23. Kim, S. J., & Lee, S. W. (1996). Air cooling technology for electronic equipment. Boca Raton, FL: CRC Press
  24. Kimura, S., & Bejan, A. (1983). The heatline visualization of convective heat transfer. Journal of Heat Transfer, 105(4), 916–919; https://doi.org/10.1115/1.3245684
  25. Kishor, V., Kumar, R., Singh, S., & Srivastava, A. (2020). Non-intrusive experimental study of natural convection in open square cavity at different inclinations. Journal of Flow Visualization and Image Processing, 27, 333–357; https://doi.org/10.1615/JFlowVisImageProc.2020031075
  26. Kumar, A., Joshi, J. B., & Nayak, A. K. (2017). A comparison of thermal-hydraulic performance of various fin patterns using 3D CFD simulations. International Journal of Heat and Mass Transfer, 109, 336–356; https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.102
  27. Li, X., Wang, Z., Li, J., Chen, L., Bai, Y., Yang, M., Guo, M., Sun, F., & Yuan, G. (2021). Numerical and experimental study of a concentrated solar thermal receiver for a solar heating system with seasonal storage. International Journal of Energy Research, 45, 7588–7604; https://doi.org/10.1002/er.6341
  28. Liu, D., Xin-Feng, L., Bo, L., Si-Quan, Z., & Yan, X. (2018). Progress in thermochemical energy storage for concentrated solar power: A review. International Journal of Energy Research, 42, 4546–4561; https://doi.org/10.1002/er.4183
  29. Loni, R., Kasaeian, A. B., Asli-Ardeh, E. A., Ghobadian, B., & Gorjian, Sh. (2018). Experimental and numerical study on dish concentrator with cubical and cylindrical cavity receivers using thermal oil. Energy, 154, 168–181; https://doi.org/10.1016/j.energy.2018.04.102
  30. Mahmoudi, A. H., Shahi, M., &Talebi, F. (2012). Entropy generation due to natural convection in a partially open cavity with a thin heat source subjected to a nanofluid. Numerical Heat Transfer: Part A—Applications, 283–305; https://doi.org/10.1080/10407782.2012.647990
  31. McGarry, M., & Kohl, J. G. (2013). Analysis of dual heat sources in a partially open enclosure. Advances in Mechanical Engineering, 2013, 126353; https://doi.org/10.1155/2013/126353
  32. Mohamad, A. A. (1995). Natural convection in open cavities and slots. Numerical Heat Transfer, 27, 705–716 ; https://doi.org/10.1080/10407789508913727
  33. Mohamed, A. A., Elganaoui, M., & Bennacer, R. (2009). Lattice Boltzmann simulation of natural convection in an open ended cavity. International Journal of Thermal Sciences, 48, 1870–1876; https://doi.org/10.1016/j.ijthermalsci.2009.02.004
  34. Naffouti, T., Thamri, L., &Djebali, R. (2020). Heat transfer optimization of MHD convection in enclosure heated with heaters separated by an active triangular body via SRT-BGK model. International Journal of Engineering Science Invention, 9, 28–50; https://www.ijesi.org/papers/Vol(9)i9/Ser-2/D0909022850.pdf
  35. Naffouti, T., Thamri, L., Naffouti, A., &Zinoubi, J. (2018). Optimization of convective heat transfer from two heating generators into horizontal enclosure including a discrete obstacle: A lattice Boltzmann comprehensive investigation. Journal of Applied Fluid Mechanics, 11(5), 1277–1286; https://doi.org/10.29252/jafm.11.05.28614
  36. Naffouti, T., Zinoubi, J., & Ben Maad, R. (2013). Lattice Boltzmann analysis of 2-D natural convection flow and heat transfer within square enclosure including an isothermal hot block. International Journal of Thermal Technologies, 3(4), 146–154; https://inpressco.com/lattice-boltzmann-analysis-of-2-d-natural-convection-flow-and-heat-transfer-within-square-enclosure-including-an-isothermal-hot-block/
  37. Naffouti, T., Zinoubi, J., Che Sidik, N. A., & Ben Maad, R. (2016). Applied thermal lattice Boltzmann model for fluid flow of free convection in 2-D enclosure with localized two active blocks: Heat transfer optimization. Journal of Applied Fluid Mechanics, 9(1), 419–430; https://doi.org/10.18869/acadpub.jafm.68.224.24198
  38. Nayak, J., Agrawal, M., Mishra, S., Sahoo, S. S., Swain, R. K., & Mishra, A. (2018). Combined heat loss analysis of trapezoidal shaped solar cooker cavity using computational approach. Case Studies in Thermal Engineering, 12, 94–103; https://doi.org/10.1016/j.csite.2018.03.009
  39. Novozhilova, A. V., Maryna, Z. G., Samorodov, A. V., & Lvov, E. A. (2017). Research of heat transfer of staggered horizontal bundles of finned tubes at free air convection. Journal of Physics: Conference Series, 891(1), 012056 ; https://ui.adsabs.harvard.edu/link_gateway/2017JPhCS.891a2056N/doi: 10.1088/1742-6596/891/1/012056
  40. Ophoff, C., Abuseada, M., Ozalp, N., & Moens, D. (2020). Systematic approach for design optimization of a 3 kW solar cavity receiver via multiphysics analysis. Solar Energy, 206, 420–435; https://doi.org/10.1016/j.solener.2020.06.021
  41. Pavlovic, S., Loni, R., Bellos, E., Vasiljevi, D., Najafi, G., &Kasaeian, A. (2018). Comparative study of spiral and conical cavity receivers for a solar dish collector. Energy Conversion and Management, 178, 111–122 ; https://doi.org/10.1016/j.enconman.2018.10.030
  42. Peterson, G. P., & Ortega, A. (1990). Thermal control of electronic equipment and devices. Advances in Heat Transfer, 20, 181–214; https://doi.org/10.1016/S0065-2717(08)70028-5
  43. Prakash, M. (2014). Numerical study of natural convection heat loss from cylindrical solar cavity receivers. ISRN Renewable Energy, 2014, 104686; https://doi.org/10.1155/2014/104686
  44. Prasad, D. R., Senthilkumar, R., Lakshmanarao, G., Krishnan, S., & Prasad, B. N. (2019). A critical review on thermal energy storage materials and systems for solar applications. AIMS Energy, 7, 507–526; https://doi.org/10.3934/energy.2019.4.507
  45. Rahimi, A., Sepehr, M., JanghorbanLariche, M., Mesbah, M., Kasaeipoor, A., & Hasani Malekshah, E. (2018). Analysis of natural convection in nanofluid-filled H-shaped cavity by entropy generation and heatline visualization using lattice Boltzmann method. Physica E: Low-dimensional Systems and Nanostructures, 97, 347–362; https://doi.org/10.1016/j.physe.2017.12.003
  46. Ren, X., Liu, F., & Xin, Z. (2023). A novel thermal lattice Boltzmann method for numerical simulation of natural convection of non-Newtonian fluids. Process, 8, 1–16; https://doi.org/10.3390/pr11082326
  47. Sadat, H. (2022). A simple analytical thermal model of solar cavity receivers. Thermal Science and Engineering Progress, 29, 101223; https://doi.org/10.1016/j.tsep.2022.101223
  48. Sajjadi, H., Amiri Delouei, A., Mohebbi, R., Izadi, M., &Succi, S. (2021). Natural convection heat transfer in a porous cavity with sinusoidal temperature distribution using Cu/Water nanofluid: Double MRT lattice Boltzmann method. Communications in ComputationalPhysics, 29, 292–318; https://doi.org/10.4208/cicp.OA-2020-0001
  49. Saleem, H., Nizamani, A. H., Bhutto, W. A., Soomro, A. M., Soomro, M. Y., & Toufik, A. (2019). Two dimensional natural convection heat losses from square solar cavity receiver. IJCSNS International Journal of Computer Science and Network Security, 19(4); http://paper.ijcsns.org/07_book/201904/20190441.pdf
  50. Shirvan, K. M., Mamourian, M., Mirzakhanlari, S., &Ellahi, R. (2017). Numerical study of surface radiation and combined natural convection heat transfer in a solar cavity receiver. International Journal of Numerical Methods for Heat & Fluid Flow, 27(10), 2385–2399; https://doi.org/10.1108/HFF-10-2016-0419
  51. Shirvan, K. M., Mamourian, M., Mirzakhanlari, S., Rahimi, A. B., &Ellahi, R. (2017). Numerical study of surface radiation and combined natural convection heat transfer in a solar cavity receiver. International Journal of Numerical Methods for Heat & Fluid Flow, 27(10), 2385–2399; https://doi.org/10.1108/HFF-10-2016-0419
  52. Shuja, S., Yilbas, B., & Kassas, M. (2010). Entropy generation in a square cavity: Effect of porous block configurations in relation to cooling applications. International Journal of Numerical Methods for Heat and Fluid Flow, 20(3), 332–347; https://www.emerald.com/insight/content/doi/10.1108/09615531011024075/full/html
  53. Souai, S., Trabelsi, S., &Sediki, E. (2025). LBM simulation for combined thermal radiation and natural convection in 2D enclosure with multiple solid blocks. Numerical Heat Transfer, Part A: Applications, 86, 1160–1185; https://doi.org/10.1080/10407782.2023.2272792
  54. Tanabe, Y., Yaji, K., & Ushijima, K. (2023). Topology optimization using the lattice Boltzmann method for unsteady natural convection problems. Structural and Multidisciplinary Optimization, 66, 1–22; https://doi.org/10.1007/s00158-023-03522-y
  55. Tian, Y., & Zhao, C. (2013). A review of solar collectors and thermal energy storage in solar thermal applications. Applied Energy, 104, 538–553; https://doi.org/10.1016/j.apenergy.2012.11.051
  56. Unger, S., Beyer, M., &Szalinski, L. (2020). Thermal and flow performance of tilted oval tubes with novel fin designs. International Journal of Heat and Mass Transfer, 153, 1–12; https://doi.org/10.1016/j.ijheatmasstransfer.2020.119621
  57. Unger, S., Beyer, M., Gruber, S., & Willner, R. (2019). Experimental study on the air-side thermal-flow performance of additively manufactured heat exchangers with novel fin designs. International Journal of Thermal Sciences, 146, 106074; https://doi.org/10.1016/j.ijthermalsci.2019.106074
  58. Uzair, M., Chaudhary, G. Q., Rehman, N. U., Anwer, M. Z., Hassan, S. H., Siddiqui, H., & Hussain, M. S. (2022). Numerical investigation to determine the optimized solar cavity shape. GMSARN International Journal, 16, 55–65; https://gmsarnjournal.com/home/wp-content/uploads/2021/05/vol16no1-6.pdf
  59. Venkatachalam, T., & Cheralathan, M. (2019). Effect of aspect ratio on thermal performance of cavity receiver for solar parabolic dish concentrator: An experimental study. Renewable Energy, 139, 573–581; https://doi.org/10.1016/j.renene.2019.02.102
  60. Wu, Z., Dai, W., Man, M., & Luo, E. (2012). A solar-powered traveling-wave thermoacoustic electricity generator. Solar Energy, 86, 2376–2382; https://doi.org/10.1016/j.solener.2012.05.010

Last update:

No citation recorded.

Last update: 2025-07-11 11:52:45

No citation recorded.