skip to main content

Application of response surface methodology to optimize the dual-fuel engine running on producer gas

1Maritime College II, Ho Chi Minh city, Viet Nam

2Institute of Mechanical Engineering, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam

3Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam

4 Faculty of Engineering, Dong Nai Technology University, Bien Hoa City, Viet Nam

5 Centre for Research Impact & Outcome, Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India

View all affiliations
Received: 28 Sep 2024; Revised: 16 Dec 2024; Accepted: 2 Jan 2025; Published: 1 Mar 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

This work develops a computational framework that optimizes the performance and emissions of a dual-fuel diesel engine running on biomass-derived producer gas as the main fuel and diesel as the pilot fuel. The study connects essential responses, brake thermal efficiency, peak combustion pressure, and emissions of nitrogen oxides (NOx), carbon monoxide (CO), and unburnt hydrocarbon (HC) with controllable factors like engine load and pilot fuel injection duration. The approach consists of simulating the impacts of these controllable inputs on engine performance, then optimization to find the optimal fuel injection pressure to balance performance and emissions. The results show that engine load considerably affects NOx emissions and brake thermal efficiency; greater loads lower CO emissions but raise HC emissions at low compression ratios. Although it had little effect on NOx emissions, fuel injection pressure was vital in balancing general engine performance. Using optimization, an optimal fuel injection pressure value of 218.5 bar was identified, thereby producing a brake thermal efficiency of 27.35% and lowering emissions to 80 ppm HC, 202 ppm NOx, and 92 ppm CO. This computational method offers a strategic means for improving the efficiency of dual-fuel engines while reducing their environmental impact, hence guiding more sustainable and effective engine operation.

Fulltext View|Download
Keywords: Biomass gasification; Optimization; Alternative fuel; Sustainability; Emission characteristic; Response surface methodology

Article Metrics:

  1. Akkoli, K. M., Banapurmath, N. R., Shivashimpi, M. M., Soudagar, M. E. M., Badruddin, I. A., Alazwari, M. A., Yaliwal, V. S., Mujtaba, M. A., Akram, N., Goodarzi, M., Safaei, M. R., & Venu, H. (2021). Effect of injection parameters and producer gas derived from redgram stalk on the performance and emission characteristics of a diesel engine. Alexandria Engineering Journal, 60(3), 3133–3142. https://doi.org/10.1016/j.aej.2021.01.047
  2. Akubo, K., Nahil, M. A., & Williams, P. T. (2019). Pyrolysis-catalytic steam reforming of agricultural biomass wastes and biomass components for production of hydrogen/syngas. Journal of the Energy Institute, 92(6), 1987–1996. https://doi.org/10.1016/j.joei.2018.10.013
  3. Alawa, B., & Chakma, S. (2023). Experimental Investigation in Compression Ratio on Performance, Combustion and Emission of VCR Engine using Pyrolysis-oil Produced from Waste Plastic Materials. Materials Today: Proceedings, 72, 2593–2609. https://doi.org/10.1016/j.matpr.2022.07.228
  4. Alruqi, M., Sharma, P., & Ağbulut, Ü. (2023). Investigations on biomass gasification derived producer gas and algal biodiesel to power a dual-fuel engines: Application of neural networks optimized with Bayesian approach and K-cross fold. Energy, 282, 128336. https://doi.org/10.1016/j.energy.2023.128336
  5. Barid, A. J., & Hadiyanto, H. (2024). Hyperparameter optimization for hourly PM2.5 pollutant prediction. Journal of Emerging Science and Engineering, 2(1), e15. https://doi.org/10.61435/jese.2024.e15
  6. Cao, D. N., Hoang, A. T., Luu, H. Q., Bui, V. G., & Tran, T. T. H. (2020). Effects of injection pressure on the NOx and PM emission control of diesel engine: A review under the aspect of PCCI combustion condition. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–18. https://doi.org/10.1080/15567036.2020.1754531
  7. Cao, D. N., & Johnson, A. J. T. (2024). A Simulation Study on a Premixed-charge Compression Ignition Mode-based Engine Using a Blend of Biodiesel/Diesel Fuel under a Split Injection Strategy. International Journal on Advanced Science, Engineering and Information Technology, 14(2), 451–471. https://doi.org/10.18517/ijaseit.14.2.20007
  8. Dabi, M., & Saha, U. K. (2016). Experimental Analysis of a Dual-Fuel Engine Fueled by Producer Gas Derived From Pine Leaves and Cattle Dung Briquettes. ASME 2015 Gas Turbine India Conference, GTINDIA 2015. https://doi.org/10.1115/GTINDIA2015-1263
  9. Das, S., & Goud, V. V. (2021). RSM-optimised slow pyrolysis of rice husk for bio-oil production and its upgradation. Energy, 225, 120161. https://doi.org/10.1016/j.energy.2021.120161
  10. Dhahad, H. A., Chaichan, M. T., & Megaritis, T. (2019). Performance, regulated and unregulated exhaust emission of a stationary compression ignition engine fueled by water-ULSD emulsion. Energy, 181, 1036–1050. https://doi.org/10.1016/J.ENERGY.2019.05.200
  11. El-Sheekh, M. M., Bedaiwy, M. Y., El-Nagar, A. A., ElKelawy, M., & Alm-Eldin Bastawissi, H. (2022). Ethanol biofuel production and characteristics optimization from wheat straw hydrolysate: Performance and emission study of DI-diesel engine fueled with diesel/biodiesel/ethanol blends. Renewable Energy, 191, 591–607. https://doi.org/10.1016/J.RENENE.2022.04.076
  12. El-Sheekh, M. M., El-Nagar, A. A., ElKelawy, M., & Bastawissi, H. A. E. (2023). Maximization of bioethanol productivity from wheat straw, performance and emission analysis of diesel engine running with a triple fuel blend through response surface methodology. Renewable Energy, 211, 706–722. https://doi.org/10.1016/J.RENENE.2023.04.145
  13. Elkelawy, M., Bastawissi, H., Sathyamurthy, R., Chandra Sekar, S., Karuppasamy, K., Vedaraman, N., & Sathiyamoorthy, K. (2018). Numerical and Experimental Investigation of Ethyl Alcohol as Oxygenator on the Combustion, Performance, and Emission Characteristics of Diesel/Cotton Seed Oil Blends in Homogenous Charge Compression Ignition Engine. SAE Technical Papers, 2018-Septe(September). https://doi.org/10.4271/2018-01-1680
  14. Elkelawy, M., El Shenawy, E. A., Almonem, S. khalaf A., Nasef, M. H., Panchal, H., Bastawissi, H. A.-E., Sadasivuni, K. K., Choudhary, A. K., Sharma, D., & Khalid, M. (2021). Experimental study on combustion, performance, and emission behaviours of diesel /WCO biodiesel/Cyclohexane blends in DI-CI engine. Process Safety and Environmental Protection, 149, 684–697. https://doi.org/10.1016/j.psep.2021.03.028
  15. Elkelawy, M., Etaiw, S. E. din H., Alm-Eldin Bastawissi, H., Ayad, M. I., Radwan, A. M., & Dawood, M. M. (2021). Diesel/ biodiesel /silver thiocyanate nanoparticles/hydrogen peroxide blends as new fuel for enhancement of performance, combustion, and Emission characteristics of a diesel engine. Energy, 216, 119284. https://doi.org/10.1016/J.ENERGY.2020.119284
  16. Fahmy, T. Y. A., Fahmy, Y., Mobarak, F., El-Sakhawy, M., & Abou-Zeid, R. E. (2020). Biomass pyrolysis: past, present, and future. Environment, Development and Sustainability, 22(1), 17–32. https://doi.org/10.1007/s10668-018-0200-5
  17. Goyal, D., Goyal, T., Mahla, S. K., Goga, G., Dhir, A., Balasubramanian, D., Hoang, A. T., Wae-Hayee, M., Josephin, J. S. F., Sonthalia, A., Varuvel, E. G., & Brindhadevi, K. (2023). Application of Taguchi design in optimization of performance and emissions characteristics of n-butanol/diesel/biogas under dual fuel mode. Fuel, 338, 127246. https://doi.org/10.1016/j.fuel.2022.127246
  18. Grimshaw, D., & Kühn, S. (2019). 3 Sustainable Development Goal 8. World Employment and Social Outlook, 2019(1), 57–72. https://doi.org/10.1002/wow3.152
  19. Halewadimath, S.S., Banapurmath, N. R., Yaliwal, V. S., Prasad, M. G., Jalihal, S. S., Soudagar, M. E. M., Yaqoob, H., Mujtaba, M. A., Shahapurkar, K., & Safaei, M. R. (2022). Effect of manifold injection of hydrogen gas in producer gas and neem biodiesel fueled CRDI dual fuel engine. International Journal of Hydrogen Energy, 47(62), 25913–25928. https://doi.org/10.1016/j.ijhydene.2022.02.135
  20. Halewadimath, Sushrut S., Banapurmath, N. R., Yaliwal, V. S., Gaitonde, V. N., Khan, T. M. Y., Vadlamudi, C., Krishnappa, S., & Sajjan, A. M. (2023). Experimental Investigations on Dual-Fuel Engine Fueled with Tertiary Renewable Fuel Combinations of Biodiesel and Producer—Hydrogen Gas Using Response Surface Methodology. Sustainability, 15(5), 4483. https://doi.org/10.3390/su15054483
  21. Hebbar, G. S. (2014). NOx from diesel engine emission and control strategis-A review. Int. J. Mech. Eng. & Rob. Res., 3(4), 473-482 https://www.ijmerr.com/uploadfile/2015/0409/20150409042911754.pdf
  22. Hoang, A. T., Huang, Z., Nižetić, S., Pandey, A., Nguyen, X. P., Luque, R., Ong, H. C., Said, Z., Le, T. H., & Pham, V. V. (2022). Characteristics of hydrogen production from steam gasification of plant-originated lignocellulosic biomass and its prospects in Vietnam. International Journal of Hydrogen Energy, 47(7), 4394–4425. https://doi.org/10.1016/j.ijhydene.2021.11.091
  23. Hoang, A. T., Pandey, A., Martinez De Osés, F. J., Chen, W.-H., Said, Z., Ng, K. H., Ağbulut, Ü., Tarełko, W., Ölçer, A. I., & Nguyen, X. P. (2023). Technological solutions for boosting hydrogen role in decarbonization strategies and net-zero goals of world shipping: Challenges and perspectives. Renewable and Sustainable Energy Reviews, 188, 113790. https://doi.org/10.1016/j.rser.2023.113790
  24. Kan, X., Wei, L., Li, X., Li, H., Zhou, D., Yang, W., & Wang, C.-H. (2020). Effects of the three dual-fuel strategies on performance and emissions of a biodiesel engine. Applied Energy, 262, 114542. https://doi.org/10.1016/j.apenergy.2020.114542
  25. Kashyap, D., Das, S., & Kalita, P. (2021). Exploring the efficiency and pollutant emission of a dual fuel CI engine using biodiesel and producer gas: An optimization approach using response surface methodology. Science of the Total Environment, 773(February), 145633. https://doi.org/10.1016/j.scitotenv.2021.145633
  26. Keshtegar, B., Mert, C., & Kisi, O. (2018). Comparison of four heuristic regression techniques in solar radiation modeling: Kriging method vs RSM, MARS and M5 model tree. Renewable and Sustainable Energy Reviews, 81, 330–341. https://doi.org/10.1016/j.rser.2017.07.054
  27. Le, T. T., Sharma, P., Le, H. C., Le, H. S., Osman, S. M., Truong, T. H., Le, D. T. N., Rowinski, L., & Tran, V. D. (2024). A glass-box approach for predictive modeling based on experimental data for a waste biomass derived producer gas-powered dual-fuel engine. International Journal of Hydrogen Energy, 58, 1122–1137. https://doi.org/10.1016/j.ijhydene.2024.01.284
  28. Liu, J., Zhao, W., Zhang, X., Ji, Q., Ma, H., Sun, P., & Wang, P. (2024). Optimizing combustion and emissions in natural gas/diesel dual-fuel engine with pilot injection strategy. Thermal Science and Engineering Progress, 48, 102418. https://doi.org/10.1016/j.tsep.2024.102418
  29. Nayak, B., Singh, T. J., & Hoang, A. T. (2021). Experimental analysis of performance and emission of a turbocharged diesel engine operated in dual-fuel mode fueled with bamboo leaf-generated gaseous and waste palm oil biodiesel/diesel fuel blends. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–19. https://doi.org/10.1080/15567036.2021.2009595
  30. Nayak, S. K., Nižetić, S., Pham, V. V., Huang, Z., Ölçer, A. I., Bui, V. G., Wattanavichien, K., & Hoang, A. T. (2022). Influence of injection timing on performance and combustion characteristics of compression ignition engine working on quaternary blends of diesel fuel, mixed biodiesel, and t-butyl peroxide. Journal of Cleaner Production, 333, 130160. https://doi.org/10.1016/j.jclepro.2021.130160
  31. Nguyen, V. G., Tran, M. H., Paramasivam, P., Le, H. C., & Nguyen, D. T. (2024). Biomass: A Versatile Resource for Biofuel, Industrial, and Environmental Solution. International Journal on Advanced Science, Engineering and Information Technology, 14(1 SE-Articles), 268–286. https://doi.org/10.18517/ijaseit.14.1.17489
  32. Omar, M. M., Munir, A., Ahmad, M., & Tanveer, A. (2018). Downdraft gasifier structure and process improvement for high quality and quantity producer gas production. Journal of the Energy Institute, 91(6), 1034–1044. https://doi.org/10.1016/j.joei.2017.07.005
  33. Padilla-Atondo, J. M., Limon-Romero, J., Perez-Sanchez, A., Tlapa, D., Baez-Lopez, Y., Puente, C., & Ontiveros, S. (2021). The Impact of Hydrogen on a Stationary Gasoline-Based Engine through Multi-Response Optimization: A Desirability Function Approach. Sustainability, 13(3), 1385. https://doi.org/10.3390/su13031385
  34. Paramasivama, P., Naima, K., & Dzida, M. (2024). Soft computing-based modelling and optimization of NOx emission from a variable compression ratio diesel engine. Journal of Emerging Science and Engineering, 2(2), e21. https://doi.org/10.61435/jese.2024.e21
  35. Percy, A. J., & Edwin, M. (2023). Studies on the performance and emission characteristics of a dual fuel VCR engine using producer gas as secondary fuel: An optimization approach using response surface methodology. Energy, 263, 125685. https://doi.org/10.1016/j.energy.2022.125685
  36. Raj, R., Kumar Singh, D., & Vachan Tirkey, J. (2023). Performance simulation and optimization of SI engine fueled with peach biomass-based producer gas and propane blend. Thermal Science and Engineering Progress, 41, 101816. https://doi.org/10.1016/j.tsep.2023.101816
  37. Razzaq, I., Amjad, M., Qamar, A., Asim, M., Ishfaq, K., Razzaq, A., & Mawra, K. (2023). Reduction in energy consumption and CO2 emissions by retrofitting an existing building to a net zero energy building for the implementation of SDGs 7 and 13. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.1028793
  38. Riediker, M., Zink, D., Kreyling, W., Oberdörster, G., Elder, A., Graham, U., Lynch, I., Duschl, A., Ichihara, G., Ichihara, S., Kobayashi, T., Hisanaga, N., Umezawa, M., Cheng, T.-J., Handy, R., Gulumian, M., Tinkle, S., & Cassee, F. (2019). Particle toxicology and health - where are we? Particle and Fibre Toxicology, 16(1), 19. https://doi.org/10.1186/s12989-019-0302-8
  39. Serbin, S., Diasamidze, B., Dzida, M., & Chen, D. (2023). Investigation of the Efficiency of a Dual-Fuel Gas Turbine Combustion Chamber with a Plasma‒Chemical Element. Polish Maritime Research, 30(2), 68–75. https://doi.org/10.2478/pomr-2023-0022
  40. Serbin, S., Diasamidze, B., Gorbov, V., & Kowalski, J. (2021). Investigations of the Emission Characteristics of a Dual-Fuel Gas Turbine Combustion Chamber Operating Simultaneously on Liquid and Gaseous Fuels. Polish Maritime Research, 28(2), 85–95. https://doi.org/10.2478/pomr-2021-0025
  41. Shaafi, T., Sairam, K., Gopinath, A., Kumaresan, G., & Velraj, R. (2015). Effect of dispersion of various nanoadditives on the performance and emission characteristics of a CI engine fuelled with diesel, biodiesel and blends—a review. Renewable and Sustainable Energy Reviews, 49, 563–573. https://doi.org/10.1016/j.rser.2015.04.086
  42. Shammas, N. K., Wang, L. K., & Wang, M.-H. S. (2020). Sources, Chemistry and Control of Acid Rain in the Environment (pp. 1–26). https://doi.org/10.1142/9789811207136_0001
  43. Sharma, P., & Bora, B. J. (2023). Modeling and optimization of a CI engine running on producer gas fortified with oxyhydrogen. Energy, 270, 126909. https://doi.org/10.1016/j.energy.2023.126909
  44. Sharma, P., Sahoo, B. B., Said, Z., Hadiyanto, H., Nguyen, X. P., Nižetić, S., Huang, Z., Hoang, A. T., & Li, C. (2023). Application of machine learning and Box-Behnken design in optimizing engine characteristics operated with a dual-fuel mode of algal biodiesel and waste-derived biogas. International Journal of Hydrogen Energy, 48(18), 6738–6760. https://doi.org/10.1016/j.ijhydene.2022.04.152
  45. Singh, P., Kumar, R., Sharma, S., & Kumar, S. (2021). Effect of engine parameters on the performance of dual-fuel CI engines with producer gas—a review. Energy & Fuels, 35(20), 16377–16402. https://doi.org/10.1021/acs.energyfuels.1c02279
  46. Skaug Saetra, H., Wynsberghe, van, Bolte, L., & Nachid, J. (2021). A Framework for Evaluating and Disclosing the ESG Related Impacts of AI with the SDGs. Sustainability 2021, Vol. 13, Page 8503, 13(15), 8503. https://doi.org/10.3390/SU13158503
  47. Sorathia, H. S., & Yadav, H. J. (2012). Energy analyses to a ci-engine using diesel and bio-gas dual fuel—a review study. World, 1(5)
  48. Sridhar, G., Dasappa, S., Sridhar, H. V., Paul, P. J., & Rajan, N. K. S. (2005, April). Gaseous Emissions Using Producer Gas as Fuel in Reciprocating Engines. https://doi.org/10.4271/2005-01-1732
  49. Vera Candioti, L., De Zan, M. M., Cámara, M. S., & Goicoechea, H. C. (2014). Experimental design and multiple response optimization. Using the desirability function in analytical methods development. Talanta, 124, 123–138. https://doi.org/10.1016/j.talanta.2014.01.034
  50. Wagemakers, A. M. L. M., Leermakers, C. A. J., Wagemakers, A. M. L. M., & Leermakers, C. A. J. (2012). Review on the Effects of Dual-Fuel Operation, Using Diesel and Gaseous Fuels, on Emissions and Performance. SAE Technical Papers. https://doi.org/10.4271/2012-01-0869
  51. Yaliwal, V. S., Nataraja, K. M., Banapurmath, N. R., & Tewari, P. G. (2014). Honge oil methyl ester and producer gas-fuelled dual-fuel engine operated with varying compression ratios. International Journal of Sustainable Engineering, 7(4), 330–340. https://doi.org/10.1080/19397038.2013.837108
  52. Yu, M., Kubiczek, J., Ding, K., Jahanzeb, A., & Iqbal, N. (2022). Revisiting SDG-7 under energy efficiency vision 2050: the role of new economic models and mass digitalization in OECD. Energy Efficiency, 15(1), 2. https://doi.org/10.1007/s12053-021-10010-z

Last update:

No citation recorded.

Last update: 2025-04-22 04:20:35

No citation recorded.