skip to main content

Achieving superior tartrazine-tetracycline removal and hydrogen production with WO3/g-C3N4/TiNTAs through integrated photocatalysis-electrocoagulation

1Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia

2Research Center for Energy Conversion and Conservation, National Research and Innovation Agency (BRIN), South Tangerang 15314, Indonesia

3Directorate General of New Renewable Energy and Energy Conservation, Ministry of Energy and Mineral Resources, Jakarta, 10320, Indonesia

Received: 27 Feb 2025; Revised: 8 Apr 2025; Accepted: 30 Apr 2025; Available online: 3 May 2025; Published: 1 Jul 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

The study aims to evaluate the removal of tartrazine (TZ), tetracycline (TC), and a combination of both TZ+TC and hydrogen (H2) production simultaneously using WO3/g-C3N4/TiNTAs (W-CN-TiNT) nanocomposites. The processes used in this study were Electrocoagulation (EC), photocatalysis (PC), and a combination of photocatalysis-electrocoagulation (PC-EC) simultaneously. The synthesis of W-CN-TiNT nanocomposites was carried out using the in-situ Anodization (IA) method, which was then tested for its performance in the PC and PC-EC processes. The nanomaterials were characterized by various techniques such as X-ray diffraction (XRD), ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS), field emission scanning electron microscopy with energy dispersive X-ray spectroscopy (FESEM-EDX), high-resolution transmission electron microscopy with selected area electron diffraction (HRTEM-SAED), X-ray photoelectron spectroscopy (XPS), and photocurrent measurements. In the PC process, liquid chromatography-high-resolution mass spectrometry (LC-HRMS), UV-Vis spectrophotometer, and gas chromatography (GC) were used to assess the efficiency of pollutant removal and H2 production. The results show that TZ is removed more easily than TC during the PC process, and the pollutant removal rate is correlated with H2 production. This observation also applies to the EC process and the PC-EC. The PC-EC process is superior to the single process of removing the TZ+TC pollutants. The proposed approach has proven to be effective for TZ+TC removal and in enhancing H2 production. The use of W-CN-TiNT nanocomposite as a photocatalyst is revolutionary. It significantly improves the process efficiency. This research provides a sustainable alternative solution that is environmentally friendly and can be applied for the treatment of pharmaceutical industrial wastewater containing complex organic compounds.

Fulltext View|Download
Keywords: Tartrazine; Tetracycline; Hydrogen Production; Photocatalysis; Electrocoagulation
Funding: Program Hibah Publikasi Terindeks Internasional (PUTI) Pascasarjana, and the Contract Number is NKB-125/UN2.RST/HKP.05.00/2024.

Article Metrics:

  1. Azizi-Toupkanloo, H., Karimi-Nazarabad, M., Shakeri, M., & Eftekhari, M. (2019). Photocatalytic mineralization of hard-degradable morphine by visible light-driven Ag@g-C3N4 nanostructures. Environmental Science and Pollution Research, 26(30), 30941–30953. https://doi.org/10.1007/s11356-019-06274-9
  2. Bamne, J., Taiwade, K., Sharma, P. K., & Haque, F. Z. (2018). Effect of calcination temperature on the growth of TiO2 nanoparticle prepared via sol-gel method using triton X-100 as surfactant. AIP Conf. Proc. 2039, 020076 (2018) 020076. https://doi.org/10.1063/1.5079035
  3. Barrera-Díaz, C. E., Lugo-Lugo, V., & Bilyeu, B. (2012). A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction. Journal of Hazardous Materials, 223–224, 1–12. https://doi.org/10.1016/j.jhazmat.2012.04.054
  4. Berge, S. M., Henderson, N. L., & Frank, M. J. (1983). Kinetics and Mechanism of Degradation of Cefotaxime Sodium in Aqueous Solution. Journal of Pharmaceutical Sciences, 72(1), 59–63. https://doi.org/10.1002/jps.2600720114
  5. Bhamare, V. S. (2022). Mechanistic insight into photocatalytic degradation of antibiotic cefadroxil by 5% barium/zinc oxide nanocomposite during water treatment. Emergent Materials, 5(2), 413–429. https://doi.org/10.1007/s42247-021-00243-0
  6. Brinzila, C. I., Monteiro, N., Pacheco, M. J., Ciríaco, L., Siminiceanu, I., & Lopes, A. (2014). Degradation of tetracycline at a boron-doped diamond anode: influence of initial pH, applied current intensity and electrolyte. Environmental Science and Pollution Research, 21(14), 8457–8465. https://doi.org/10.1007/s11356-014-2778-y
  7. Demirci, Y., Pekel, L. C., & Alpbaz, M. (2015). Investigation of Different Electrode Connections in Electrocoagulation of Textile Wastewater Treatment. International Journal of Electrochemical Science, 10(3), 2685–2693. https://doi.org/10.1016/S1452-3981(23)04877-0
  8. Di Silvestre, M. L., Favuzza, S., Riva Sanseverino, E., & Zizzo, G. (2018). How Decarbonization, Digitalization and Decentralization are changing key power infrastructures. Renewable and Sustainable Energy Reviews, 93, 483–498. https://doi.org/10.1016/j.rser.2018.05.068
  9. Eidsvåg, H., Bentouba, S., Vajeeston, P., Yohi, S., & Velauthapillai, D. (2021). TiO2 as a Photocatalyst for Water Splitting An Experimental and Theoretical Review. Molecules, 26(6), 1687. https://doi.org/10.3390/molecules26061687
  10. Emamjomeh, Mohammad. M., & Sivakumar, Muttucumaru. (2009). Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes. Journal of Environmental Management, 90(5), 1663–1679. https://doi.org/10.1016/j.jenvman.2008.12.011
  11. Gu, L., Wang, J., Zou, Z., & Han, X. (2014). Graphitic-C3N4-hybridized TiO2 nanosheets with reactive facets to enhance the UV and visible-light photocatalytic activity. Journal of Hazardous Materials, 268, 216–223. https://doi.org/10.1016/j.jhazmat.2014.01.021
  12. Husein, S., Nanda Ayu Saputri, N., Maria Ulfa, A., Studi Farmasi, P., Ilmu Kesehatan, F., Malahayati, U., & Author, C. (2023). Uji toksisitas akut limbah antibiotik streptomicyn dan tetrasiklin hcl terhadap ikan mas (Cyprinus carpio L.). Indonesian Nursing Journal of Education and Clinic, 3(4)
  13. Husein, S., Rustamadji, R. R., Pratiwi, R., Dewi, E. L., & Slamet. (2024). Simultaneous tartrazine-tetracycline removal and hydrogen production in the hybrid electrocoagulation-photocatalytic process using g-C3N4/TiNTAs. Communications in Science and Technology, 9(1), 46–56. https://doi.org/10.21924/cst.9.1.2024.1308
  14. Ji, S., Yang, Y., Zhou, Z., Li, X., & Liu, Y. (2021). Photocatalysis-Fenton of Fe-doped g-C3N4 catalyst and its excellent degradation performance towards RhB. Journal of Water Process Engineering, 40, 101804. https://doi.org/10.1016/j.jwpe.2020.101804
  15. Jiang, Z., Zhang, W., Jin, L., Yang, X., Xu, F., Zhu, J., & Huang, W. (2007). Direct XPS Evidence for Charge Transfer from a Reduced Rutile TiO2 (110) Surface to Au Clusters. The Journal of Physical Chemistry C, 111(33), 12434–12439. https://doi.org/10.1021/jp073446b
  16. Kabdaşlı, I., Arslan-Alaton, I., Ölmez-Hancı, T., & Tünay, O. (2012). Electrocoagulation applications for industrial wastewaters: a critical review. Environmental Technology Reviews, 1(1), 2–45. https://doi.org/10.1080/21622515.2012.715390
  17. Karimi-Nazarabad, M., & Goharshadi, E. K. (2017). Highly efficient photocatalytic and photoelectrocatalytic activity of solar light driven WO3/g-C3N4 nanocomposite. Solar Energy Materials and Solar Cells, 160, 484–493. https://doi.org/10.1016/j.solmat.2016.11.005
  18. Katrib, A., Hemming, F., Wehrer, P., Hilaire, L., & Maire, G. (1995). The multi-surface structure and catalytic properties of partially reduced WO3, WO2 and WC + O2 or W + O2 as characterized by XPS. Journal of Electron Spectroscopy and Related Phenomena, 76, 195–200. https://doi.org/10.1016/0368-2048(95)02451-4
  19. Lei, J., Chen, Y., Shen, F., Wang, L., Liu, Y., & Zhang, J. (2015). Surface modification of TiO2 with g-C3N4 for enhanced UV and visible photocatalytic activity. Journal of Alloys and Compounds, 631, 328–334. https://doi.org/10.1016/j.jallcom.2015.01.080
  20. Li, H., Wu, C.-H., Liu, Y.-C., Yuan, S.-H., Chiang, Z.-X., Zhang, S., & Wu, R.-J. (2021). Mesoporous WO3-TiO2 heterojunction for a hydrogen gas sensor. Sensors and Actuators B: Chemical, 341, 130035. https://doi.org/10.1016/j.snb.2021.130035
  21. Linares-Hernández, I., Barrera-Díaz, C., Roa-Morales, G., Bilyeu, B., & Ureña-Núñez, F. (2009). Influence of the anodic material on electrocoagulation performance. Chemical Engineering Journal, 148(1), 97–105. https://doi.org/10.1016/j.cej.2008.08.007
  22. Lu, X., Wang, Q., & Cui, D. (2010). Preparation and Photocatalytic Properties of g-C3N4/TiO2 Hybrid Composite. Journal of Materials Science & Technology, 26(10), 925–930. https://doi.org/10.1016/S1005-0302(10)60149-1
  23. Mollah, M. Y. A., Schennach, R., Parga, J. R., & Cocke, D. L. (2001). Electrocoagulation (EC) — science and applications. Journal of Hazardous Materials, 84(1), 29–41. https://doi.org/10.1016/S0304-3894(01)00176-5
  24. Morozzi, P., Ballarin, B., Arcozzi, S., Brattich, E., Lucarelli, F., Nava, S., Gómez-Cascales, P. J., Orza, J. A. G., & Tositti, L. (2021). Ultraviolet–Visible Diffuse Reflectance Spectroscopy (UV–Vis DRS), a rapid and non-destructive analytical tool for the identification of Saharan dust events in particulate matter filters. Atmospheric Environment, 252, 118297. https://doi.org/10.1016/j.atmosenv.2021.118297
  25. Moura, C., Munteanu, D., Cunha, L., Constantin, D. G., & Moura, C. (2012). The influence of oxygen flow during deposition on the structural, mechanical and tribological properties of titanium oxide magnetron sputtered thin films. In Article in Journal of Optoelectronics and Advanced Materials (Vol. 14, Issue 11)
  26. Muttaqin, R., Pratiwi, R., Ratnawati, Dewi, E. L., Ibadurrohman, M., & Slamet. (2022). Degradation of methylene blue-ciprofloxacin and hydrogen production simultaneously using combination of electrocoagulation and photocatalytic process with Fe-TiNTAs. International Journal of Hydrogen Energy, 47(42), 18272–18284. https://doi.org/10.1016/j.ijhydene.2022.04.031
  27. Nakata, K., & Fujishima, A. (2012). TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13(3), 169–189. https://doi.org/10.1016/j.jphotochemrev.2012.06.001
  28. Ouaissa, Y. A., Chabani, M., Amrane, A., & Bensmaili, A. (2014). Removal of tetracycline by electrocoagulation: Kinetic and isotherm modeling through adsorption. Journal of Environmental Chemical Engineering, 2(1), 177–184. https://doi.org/10.1016/j.jece.2013.12.009
  29. Pandey, B., Rani, S., & Roy, S. C. (2020). A scalable approach for functionalization of TiO2 nanotube arrays with g-C3N4 for enhanced photo-electrochemical performance. Journal of Alloys and Compounds, 846, 155881. https://doi.org/10.1016/j.jallcom.2020.155881
  30. Pelawi, L. F., Slamet, S., & Elysabeth, T. (2020). Combination of electrocoagulation and photocatalysis for hydrogen production and decolorization of tartrazine dyes using CuO-TiO2 nanotubes photocatalysts. AIP Conf. Proc. 2223, 040001 (2020) https://doi.org/10.1063/5.0000953
  31. Phromma, S., Wutikhun, T., Kasamechonchung, P., Eksangsri, T., & Sapcharoenkun, C. (2020). Effect of Calcination Temperature on Photocatalytic Activity of Synthesized TiO2 Nanoparticles via Wet Ball Milling Sol-Gel Method. Applied Sciences, 10(3), 993. https://doi.org/10.3390/app10030993
  32. Pratiwi, R., Ibadurrohman, M., Dewi, E. L., Ratnawati, Yudianti, R., Husein, S., & Slamet. (2025). Development of CdS/TNTA nanocomposite to improve performance of simultaneous electrocoagulation-photocatalysis process for hydrogen production and ciprofloxacin elimination. Materials Science for Energy Technologies, 8, 121–130. https://doi.org/10.1016/j.mset.2025.01.001
  33. Qahtan, T. F., Owolabi, T. O., & Saleh, T. A. (2024). X-ray photoelectron spectroscopy of surface-treated TiO2 mesoporous film by 500 eV argon ion beam. Journal of Molecular Liquids, 393, 123556. https://doi.org/10.1016/j.molliq.2023.123556
  34. Rahmati, R., Nayebi, B., & Ayati, B. (2021). Investigating the effect of hydrogen peroxide as an electron acceptor in increasing the capability of slurry photocatalytic process in dye removal. Water Science and Technology, 83(10), 2414–2423. https://doi.org/10.2166/wst.2021.136
  35. Ratnawati, Gunlazuardi, J., Dewi, E. L., & Slamet. (2014). Effect of NaBF4 addition on the anodic synthesis of TiO2 nanotube arrays photocatalyst for production of hydrogen from glycerol–water solution. International Journal of Hydrogen Energy, 39(30), 16927–16935. https://doi.org/10.1016/j.ijhydene.2014.07.178
  36. Saalinraj, S., & Ajithprasad, K. C. (2017). Effect of Calcination Temperature on Non-linear Absorption Co-efficient of Nano Sized Titanium Dioxide (TiO2) Synthesised by Sol-Gel Method. Materials Today: Proceedings, 4(2), 4372–4379. https://doi.org/10.1016/j.matpr.2017.04.008
  37. Scarpelli, F., Mastropietro, T. F., Poerio, T., & Godbert, N. (2018). Mesoporous TiO2 Thin Films: State of the Art. In Titanium Dioxide - Material for a Sustainable Environment. InTech. https://doi.org/10.5772/intechopen.74244
  38. Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., & Bahnemann, D. W. (2014). Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chemical Reviews, 114(19), 9919–9986. https://doi.org/10.1021/cr5001892
  39. Shaikh, S. F., Mane, R. S., Min, B. K., Hwang, Y. J., & Joo, O. (2016). D-sorbitol-induced phase control of TiO2 nanoparticles and its application for dye-sensitized solar cells. Scientific Reports, 6(1), 20103. https://doi.org/10.1038/srep20103
  40. Sharfan, N., Shobri, A., Anindria, F. A., Mauricio, R., Tafsili, M. A. B., & Slamet, S. (2018). Treatment of Batik Industry Waste with a Combination of Electrocoagulation and Photocatalysis. International Journal of Technology, 9(5), 936. https://doi.org/10.14716/ijtech.v9i5.618
  41. Sim, L. C., Koh, K. S., Leong, K. H., Chin, Y. H., Aziz, A. A., & Saravanan, P. (2020). In situ growth of g-C3N4 on TiO2 nanotube arrays: Construction of heterostructures for improved photocatalysis properties. Journal of Environmental Chemical Engineering, 8(1), 103611. https://doi.org/10.1016/j.jece.2019.103611
  42. Slamet, S., & Kurniawan, R. (2018). Degradation of tartrazine and hydrogen production simultaneously with combination of photocatalysis-electrocoagulation. AIP Conf. Proc, 020064. https://doi.org/10.1063/1.5064350
  43. Stefanov, P., Shipochka, M., Stefchev, P., Raicheva, Z., Lazarova, V., & Spassov, L. (2008). XPS characterization of TiO2 layers deposited on quartz plates. Journal of Physics: Conference Series, 100(1), 012039. https://doi.org/10.1088/1742-6596/100/1/012039
  44. Suárez-Escobar, A., Pataquiva-Mateus, A., & López-Vasquez, A. (2016). Electrocoagulation photocatalytic process for the treatment of lithographic wastewater. Optimization using response surface methodology (RSM) and kinetic study. Catalysis Today, 266, 120–125. https://doi.org/10.1016/j.cattod.2015.09.016
  45. Tan, Y., Chen, Y., Mahimwalla, Z., Johnson, M. B., Sharma, T., Brüning, R., & Ghandi, K. (2014). Novel synthesis of rutile titanium dioxide–polypyrrole nano composites and their application in hydrogen generation. Synthetic Metals, 189, 77–85. https://doi.org/10.1016/j.synthmet.2013.12.025
  46. Vaiano, V., Iervolino, G., & Sannino, D. (2016). Photocatalytic removal of tartrazine dye from aqueous samples on LaFeO3/ZnO Photocatalysts. Chemical Engineering Transactions, 52, 847–852. https://doi.org/10.3303/CET1652142
  47. Wang, X. G., Jang, Y. S., Yang, N. H., Yuan, L., & Pang, S. J. (1998). XPS and XRD study of the electrochromic mechanism of WOx films. Surface and Coatings Technology, 99(1–2), 82–86. https://doi.org/10.1016/S0257-8972(97)00415-5
  48. Won, J. H., Kim, M. K., Oh, H. S., & Jeong, H. M. (2023). Scalable production of visible light photocatalysts with extended nanojunctions of WO3/g-C3N4 using zeta potential and phase control in sol-gel process. Applied Surface Science, 612. https://doi.org/10.1016/j.apsusc.2022.155838
  49. Wu, S., Hu, H., Lin, Y., Zhang, J., & Hu, Y. H. (2020). Visible light photocatalytic degradation of tetracycline over TiO2. Chemical Engineering Journal, 382, 122842. https://doi.org/10.1016/j.cej.2019.122842
  50. Zhou, S., Liu, S., Su, K., & Jia, K. (2020). Graphite carbon nitride coupled S-doped hydrogenated TiO2 nanotube arrays with improved photoelectrochemical performance. Journal of Electroanalytical Chemistry, 862, 114008. https://doi.org/10.1016/j.jelechem.2020.114008

Last update:

No citation recorded.

Last update: 2025-10-06 19:37:28

No citation recorded.