skip to main content

Optimization of ultrasonication time on the production of ZnO-SiO2 nanocomposite as photocatalytic material

1Department of Industrial Chemical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia

2Faculty of Science Technology and Engineering, Higher College of Technology, Ruwais, Abu Dhabi, United Arab Emirates

Received: 24 Mar 2025; Revised: 17 May 2025; Accepted: 24 Jun 2025; Available online: 18 Jul 2025; Published: 1 Sep 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Nanocomposite ZnO-SiO2 is widely known for its efficacy as a semiconductor photocatalyst. Current nanocomposite production methods face challenges like particle agglomeration and inconsistent particle size control. To overcome this problem, the ultrasonication method was used to prevent agglomeration and produce composites in nanoscale, where this study synthesized ZnO-SiO2 for photocatalytic degradation of dye color. To prepare this nanocomposite, the ultrasonication time was varied from 0 to 45 minutes to understand the particle properties and the effectivity on the photocatalytic activity. Silica was prepared from water glass via sol-gel method to produce colloidal SiO2 nanoparticles and then mixed with ZnO with the ratio of 3% wt and subjected to ultrasonication method. Under various ultrasonication time, the FTIR analysis shows the Si-O peak at 895 cm-1 indicates the presence of SiO2 particles. The XRD validate the formation of ZnO-SiO2 nanoparticles, supporting the FTIR analysis. The best nanoparticle properties were achieved with 45 minutes of ultrasonication. The SEM analysis confirms the present of SiO2 and ZnO. From BET analysis, ZnO-SiO2 has a high surface area (117.64 m2/g), moderate pore volume (0.46 cm3/g), and small particle pore size (11.59 nm). The photocatalytic activity of ZnO-SiO₂ nanocomposites was evaluated by the degradation of methylene blue (MB) under sunlight and the best performance reached by the nanocomposite prepared under 45 minutes ultrasonication. The results show that the ultrasonication technique efficiently reduces agglomeration, as indicated by a reduction in particle diameter from 35.04 nm (pure ZnO) to 11.59 nm (ZnO-SiO₂), and significantly enhances photocatalytic activity, achieving 97% degradation of MB under sunlight after 180 minutes. The aforementioned technique demonstrates significant potential for industrial use, providing higher efficiency and expandability in manufacturing superior photocatalytic substances.
Fulltext View|Download
Keywords: ZnO-SiO₂; ultrasonication; photocatalytic activity; methylene blue; nanomaterials; sol-gel method

Article Metrics:

Article Info
Section: Regional Symposium of Chemical Engineering 2024
Language : EN
  1. Ali, A. M., Harraz, F. A., Ismail, A. A., Al-Sayari, S. A., Algarni, H., & Al-Sehemi, A. G. (2016). Synthesis of amorphous ZnO-SiO2 nanocomposite with enhanced chemical sensing properties. Thin Solid Films, 605, 277–282. https://doi.org/10.1016/j.tsf.2015.11.044
  2. Alothman, Z. A. (2012). A review: Fundamental aspects of silicate mesoporous materials. Materials, 5(12), 2874–2902. https://doi.org/10.3390/ma5122874
  3. Asadi, A., Pourfattah, F., Miklós Szilágyi, I., Afrand, M., Żyła, G., Seon Ahn, H., Wongwises, S., Minh Nguyen, H., Arabkoohsar, A., & Mahian, O. (2019). Effect of sonication characteristics on stability, thermophysical properties, and heat transfer of nanofluids: A comprehensive review. Ultrasonics Sonochemistry, 58, 104701. https://doi.org/10.1016/J.ULTSONCH.2019.104701
  4. Bindu, P., & Thomas, S. (2014). Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. Journal of Theoretical and Applied Physics, 8(4), 123–134. https://doi.org/10.1007/s40094-014-0141-9
  5. Chalatsi-diamanti, P., Isari, E. A., Grilla, E., & Kokkinos, P. (2025). Recent prospects , challenges and advancements of photocatalysis as a wastewater treatment method. Water Emerg. Contam. Nanoplastics, 4(12). https://doi.org/10.20517/wecn.2025.03
  6. Chen, X., Wu, Z., Liu, D., & Gao, Z. (2017). Preparation of ZnO Photocatalyst for the Efficient and Rapid Photocatalytic Degradation of Azo Dyes. Nanoscale Research Letters, 12(1). https://doi.org/10.1186/S11671-017-1904-4
  7. Chen, Y., Ding, H., & Sun, S. (2017). Preparation and characterization of ZnO nanoparticles supported on amorphous SiO2. Nanomaterials, 7(8). https://doi.org/10.3390/nano7080217
  8. Dedova, T., Acik, I. O., Chen, Z., Katerski, A., Balmassov, K., Gromyko, I., Nagyné-Kovács, T., Szilágyi, I. M., & Krunks, M. (2020). Enhanced photocatalytic activity of ZnO nanorods by surface treatment with HAuCl4: Synergic effects through an electron scavenging, plasmon resonance and surface hydroxylation. Materials Chemistry and Physics, 245, 2–11. https://doi.org/10.1016/j.matchemphys.2020.122767
  9. Dehghani, M., Naseri, M., Nadeem, H., Banaszak Holl, M. M., & Batchelor, W. (2022). Sunlight-driven photocatalytic per- and polyfluoroalkyl substances degradation over zinc oxide/cellulose nanofiber catalyst using a continuous flow reactor. Journal of Environmental Chemical Engineering, 10(6), 108686. https://doi.org/10.1016/j.jece.2022.108686
  10. El Golli, A., Contreras, S., & Dridi, C. (2023). Bio-synthesized ZnO nanoparticles and sunlight-driven photocatalysis for environmentally-friendly and sustainable route of synthetic petroleum refinery wastewater treatment. Scientific Reports, 13(1), 1–14. https://doi.org/10.1038/s41598-023-47554-2
  11. Elbanna, O., Zhang, P., Fujitsuka, M., & Majima, T. (2016). Facile preparation of nitrogen and fluorine codoped TiO2 mesocrystal with visible light photocatalytic activity. Applied Catalysis B: Environmental, 192, 80–87. https://doi.org/10.1016/j.apcatb.2016.03.053
  12. Faizah, N., & Qomariyah, L. (2024). A Review on Recent Progress in Material Design Using Spray Drying Technology —An Experimental and Theoretical Study—. Earozoru Kenkyu, 39(4), 249–262. https://doi.org/10.11203/jar.39.249
  13. Faizah, N., Widiyastuti, W., Setyawan, H., & Nurtono, T. (2024). Extraction of antioxidant and antibacterial agents from avocado (Persea americana) seed using Pulsed Electric Field method. Industrial Crops and Products, 222(P3), 119803. https://doi.org/10.1016/j.indcrop.2024.119803
  14. Fatimah, I., Fadillah, G., Sahroni, I., Kamari, A., Sagadevan, S., & Doong, R. A. (2021). Nanoflower-like composites of ZnO/SiO2 synthesized using bamboo leaves ash as reusable photocatalyst. Arabian Journal of Chemistry, 14(3), 102973. https://doi.org/10.1016/j.arabjc.2020.102973
  15. Holder, C. F., & Schaak, R. E. (2019). Tutorial on Powder X-ray Diffraction for Characterizing Nanoscale Materials. ACS Nano, 13(7), 7359–7365. https://doi.org/10.1021/acsnano.9b05157
  16. Jin, J., Ma, H., Wang, K., Yagoub, A. E. G. A., Owusu, J., Qu, W., He, R., Zhou, C., & Ye, X. (2015). Effects of multi-frequency power ultrasound on the enzymolysis and structural characteristics of corn gluten meal. Ultrasonics Sonochemistry, 24, 55–64. https://doi.org/10.1016/j.ultsonch.2014.12.013
  17. Joshaghani, M., Yazdani, D., & Zinatizadeh, A. A. (2017). Statistical modeling of p-nitrophenol degradation using a response surface methodology (RSM) over nano zero-valent iron-modified Degussa P25-TiO2/ZnO photocatalyst with persulfate. Journal of the Iranian Chemical Society, 14(11), 2449–2456. https://doi.org/10.1007/s13738-017-1179-9
  18. Kadir, A., Qomariyah, L., Ogi, T., Atmajaya, H., Putra, N. R., Sunarno, S. D. A. M., Tejamaya, M., & Zuchrillah, D. R. (2023). Cost-effective and rapid synthesis of ZnO photocatalyst with the high performance of dye photodegradation as application in minimizing chemical risks used in industry. Journal of Sol-Gel Science and Technology, 107(3), 711–724. https://doi.org/10.1007/s10971-023-06147-1
  19. Kurnaz Yetim, N., Kurşun Baysak, F., Koç, M. M., & Nartop, D. (2020). Characterization of magnetic Fe3O4@SiO2 nanoparticles with fluorescent properties for potential multipurpose imaging and theranostic applications. Journal of Materials Science: Materials in Electronics, 31(20), 18278–18288. https://doi.org/10.1007/s10854-020-04375-7
  20. Kusdianto, K., Widiyastuti, W., Shimada, M., Qomariyah, L., & Winardi, S. (2020). Fabrication of ZnO-SiO2 Nanocomposite Materials Prepared by a Spray Pyrolysis for the Photocatalytic Activity under UV and Sunlight Irradiations. IOP Conference Series: Materials Science and Engineering, 778(1). https://doi.org/10.1088/1757-899X/778/1/012105
  21. Lee, K. M., & Abd Hamid, S. B. (2015). Simple response surface methodology: Investigation on advance photocatalytic oxidation of 4-chlorophenoxyacetic acid using UV-active ZnO photocatalyst. Materials, 8(1), 339–354. https://doi.org/10.3390/ma8010339
  22. Mahdavi, R., & Ashraf Talesh, S. S. (2017). The effect of ultrasonic irradiation on the structure, morphology and photocatalytic performance of ZnO nanoparticles by sol-gel method. Ultrasonics Sonochemistry, 39(February), 504–510. https://doi.org/10.1016/j.ultsonch.2017.05.012
  23. Mourya, A. K., Singh, R. P., Kumar, T., Talmale, A. S., Gaikwad, G. S., & Wankhade, A. V. (2023). Tuning the morphologies of ZnO for enhanced photocatalytic activity. Inorganic Chemistry Communications, 154(May), 110850. https://doi.org/10.1016/j.inoche.2023.110850
  24. Ortiz-Quiñonez, J. L., & Pal, U. (2024). Interface engineered metal oxide heterojunction nanostructures in photocatalytic CO2 reduction: Progress and prospects. Coordination Chemistry Reviews, 516(January). https://doi.org/10.1016/j.ccr.2024.215967
  25. Qomariyah, L., Widiyastuti, W., Kusdianto, K., Nurtono, T., Anggoro, D., & Winardi, S. (2020). Rapid electrospray synthesis and photocatalytic activities inhibition by ZnO–SiO 2 composite particles. Chemical Papers, 74, 4115–4123
  26. Qu, W., Ma, H., Jia, J., He, R., Luo, L., & Pan, Z. (2012). Enzymolysis kinetics and activities of ACE inhibitory peptides from wheat germ protein prepared with SFP ultrasound-assisted processing. Ultrasonics Sonochemistry, 19(5), 1021–1026. https://doi.org/10.1016/j.ultsonch.2012.02.006
  27. Raha, S., & Ahmaruzzaman, M. (2022). ZnO nanostructured materials and their potential applications: progress, challenges and perspectives. Nanoscale Advances, 4(8), 1868–1925. https://doi.org/10.1039/d1na00880c
  28. Ren, X., Ma, H., Mao, S., & Zhou, H. (2014). Effects of sweeping frequency ultrasound treatment on enzymatic preparations of ACE-inhibitory peptides from zein. European Food Research and Technology, 238(3), 435–442. https://doi.org/10.1007/s00217-013-2118-3
  29. Rohilla, S., Gupta, A., Kumar, V., Kumari, S., Petru, M., Amor, N., Noman, M. T., & Dalal, J. (2021). Excellent UV-Light Triggered Photocatalytic Performance of ZnO.SiO2 Nanocomposite for Water Pollutant Compound Methyl Orange Dye. Nanomaterials, 11(10), 2548. https://doi.org/10.3390/nano11102548
  30. Selvinsimpson, S., Gnanamozhi, P., Pandiyan, V., Govindasamy, M., Habila, M. A., AlMasoud, N., & Chen, Y. (2021). Synergetic effect of Sn doped ZnO nanoparticles synthesized via ultrasonication technique and its photocatalytic and antibacterial activity. Environmental Research, 197, 111115. https://doi.org/10.1016/j.envres.2021.111115
  31. Shaba, E. Y., Tijani, J. O., Jacob, J. O., & Suleiman, M. A. T. (2023). Effect of mixing ratios of SiO2 nanoparticles synthesized from metakaolin on the physicochemical properties of ZnO/SiO2 nanocomposites. Nano-Structures and Nano-Objects, 35, 101003. https://doi.org/10.1016/j.nanoso.2023.101003
  32. Sreenath, P. R., Mandal, S., Panigrahi, H., Das, P., & Dinesh Kumar, K. (2020). Carbon dots: Fluorescence active, covalently conjugated and strong reinforcing nanofiller for polymer latex. Nano-Structures and Nano-Objects, 23, 100477. https://doi.org/10.1016/j.nanoso.2020.100477
  33. Stanley, R., J, A. J., & S, M. V. (2019). Enhanced sunlight photocatalytic degradation of methylene blue by rod-like ZnO-SiO2 nanocomposite. Optik, 180(November 2018), 134–143. https://doi.org/10.1016/j.ijleo.2018.11.084
  34. Wang, D., Yan, L., Ma, X., Wang, W., Zou, M., Zhong, J., Ding, T., Ye, X., & Liu, D. (2018). Ultrasound promotes enzymatic reactions by acting on different targets: Enzymes, substrates and enzymatic reaction systems. International Journal of Biological Macromolecules, 119, 453–461. https://doi.org/10.1016/j.ijbiomac.2018.07.133
  35. Wang, J., Shah, Z. H., Zhang, S., & Lu, R. (2014). Silica-based nanocomposites via reverse microemulsions: Classifications, preparations, and applications. Nanoscale, 6(9), 4418–4437. https://doi.org/10.1039/c3nr06025j
  36. Wang, M., Zhang, M., Pang, L., Yang, C., Zhang, Y., Hu, J., & Wu, G. (2019). Fabrication of highly durable polysiloxane-zinc oxide (ZnO) coated polyethylene terephthalate (PET) fabric with improved ultraviolet resistance, hydrophobicity, and thermal resistance. Journal of Colloid and Interface Science, 537, 91–100. https://doi.org/10.1016/j.jcis.2018.10.105
  37. Wang, N., Yang, Y., & Yang, G. (2011). Great blue-shift of luminescence of ZnO nanoparticle array constructed from ZnO quantum dots. Nanoscale Research Letters, 6(1), 2–7. https://doi.org/10.1186/1556-276X-6-338
  38. Wang, X., Zhou, S., & Wu, L. (2013). Facile encapsulation of SiO2 on ZnO quantum dots and its application in waterborne UV-shielding polymer coatings. Journal of Materials Chemistry C, 1(45), 7547–7553. https://doi.org/10.1039/c3tc31479k
  39. Winardi, S., Qomariyah, L., Widiyastuti, W., Kusdianto, K., Nurtono, T., & Madhania, S. (2020). The role of electro-sprayed silica-coated zinc oxide nanoparticles to hollow silica nanoparticles for optical devices material and their characterization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 604(February), 125327. https://doi.org/10.1016/j.colsurfa.2020.125327
  40. Xu, B., Azam, S. M. R., Feng, M., Wu, B., Yan, W., Zhou, C., & Ma, H. (2021). Application of multi-frequency power ultrasound in selected food processing using large-scale reactors: A review. Ultrasonics Sonochemistry, 81, 105855. https://doi.org/10.1016/j.ultsonch.2021.105855
  41. Zhang, K., Wang, J., Ninakanti, R., & Verbruggen, S. W. (2023). Solvothermal synthesis of mesoporous TiO2 with tunable surface area, crystal size and surface hydroxylation for efficient photocatalytic acetaldehyde degradation. Chemical Engineering Journal, 474(May), 145188. https://doi.org/10.1016/j.cej.2023.145188

Last update:

No citation recorded.

Last update: 2025-10-21 01:50:02

No citation recorded.