skip to main content

Numerical evaluation of the high solidity values effect on the performance of H-Darrieus turbine with NACA 0025 hydroprofiel

1Department of Engineering, Universidad Surcolombiana, Neiva, Colombia

2Department of Engineering, Institución Universitaria - ITM, Medellín, Colombia

Received: 18 Apr 2025; Revised: 6 Jul 2025; Accepted: 10 Aug 2025; Available online: 26 Aug 2025; Published: 1 Sep 2025.
Editor(s): Mostafa Esmaeili Shayan
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

This study evaluates the performance of high-solidity H-Darrieus hydrokinetic turbines using transient two-dimensional (2D) Computational Fluid Dynamics (CFD) simulations. The objective was to analyze the impact of variations in rotor radius and blade chord length on the mechanical power generated at the shaft and on the power coefficient (Cp). Six rotors with a NACA 0025 airfoil were modeled, covering a solidity range from 1.09 to 1.64. The highest mechanical power generated was 211.6 W with a 450 mm radius rotor at a solidity of 1.09, while the maximum power coefficient (Cp,max) was 0.49. Numerical results demonstrated a strong correlation between the Cp and torque (T) as a function of the tip-speed ratio (TSR). Both magnitudes followed a similar trend, reaching their peaks within an optimal TSR range of ~2 and exhibiting analogous behavior throughout the entire performance curve. The findings confirm that for a given solidity, increasing the rotor size significantly enhances the generated torque and power. However, for the solidity values evaluated, an increase in solidity beyond 1.0 has a negative impact on the Cp. Specifically, the rotor with the highest solidity of 1.64 showed a significantly lower maximum power and Cp, in addition to a narrower operational range. The analogous behavior of the Cp trend with respect to solidity variation was corroborated by validation with the experimental findings of Dai and Lam. A discrepancy between the simulation and experimental results of between 31% and 42% was found, which is attributable to the idealizations inherent in the 2D model, such as the omission of three-dimensional effects. Despite these simplifications, the model proved to be a practical and efficient approach for the comparative analysis of turbine geometries in the initial design stages.

Fulltext View|Download
Keywords: fluid mechanics; turbomachines; hydraulic turbines; fluid dynamics; finite volume.

Article Metrics:

Article Info
Section: Original Research Article
Language : EN
  1. Abdalrahman, G., Melek, W., & Lien, F. S. (2017). Pitch angle control for a small-scale Darrieus vertical axis wind turbine with straight blades (H-Type VAWT). Renewable Energy, 114, 1353–1362. https://doi.org/10.1016/j.renene.2017.07.068
  2. ANSYS. (2021). Ansys Fluent Theory Guide
  3. Benchikh Le Hocine, A. E., Jay Lacey, R. W., & Poncet, S. (2019). Multiphase modeling of the free surface flow through a Darrieus horizontal axis shallow-water turbine. Renewable Energy, 143, 1890–1901. https://doi.org/10.1016/j.renene.2019.06.010
  4. Benchikh Le Hocine, A. E., Poncet, S., & Lacey, J. (2020). Numerical Modeling of a Darrieus Horizontal Axis Shallow-Water Turbine. Journal of Energy Engineering, 146(5). https://doi.org/10.1061/(asce)ey.1943-7897.0000700
  5. Brusca, S., Cucinotta, F., Galvagno, A., Lanzafame, R., Mauro, S., & Messina, M. (2015). Oscillating Water Column Wave Energy Converter by means of straight-bladed Darrieus turbine. Energy Procedia, 82, 766–773. https://doi.org/10.1016/j.egypro.2015.11.809
  6. Cardona Cárdenas, J. D., Ardila Marín, J. G., Gutiérrez Flórez, J. M., & Vanegas, C. A. R. (2021). Vertical axis Darrieus turbines: State of the art research. International Journal of Engineering Research and Technology, 14(7). http://www.irphouse.com708
  7. Cardona-Cárdenas, J. D., Zuluaga, D. A. H., Marín, J. G. A., Faria, R. de O., & Vanegas, C. A. R. (2023). Impact of Blade and Solidity on the Performance of H-Darrieus Hydrokinetic Turbines by CFD Simulation. Revista de Gestão Social e Ambiental, 18(1), e03224. https://doi.org/10.24857/rgsa.v18n1-007
  8. Çetin, N. S., Yurdusev, M. A., Ata, R., & Özdamar, A. (2005). Assessment of optimum tip speed ratio of wind turbines. Mathematical and Computational Applications, 10(1), 147–154
  9. https://doi.org/10.3390/mca10010147
  10. Dai, Y. M., & Lam, W. H. (2009). Numerical study of straight-bladed Darrieus-type tidal turbine. Proceedings of Institution of Civil Engineers: Energy, 162(2), 67–76. https://doi.org/10.1680/ener.2009.162.2.67
  11. Daróczy, L., Janiga, G., Petrasch, K., Webner, M., & Thévenin, D. (2015). Comparative analysis of turbulence models for the aerodynamic simulation of H-Darrieus rotors. Energy, 90, 680–690. https://doi.org/10.1016/j.energy.2015.07.102
  12. Dessoky, A., Bangga, G., Lutz, T., & Krämer, E. (2019). Aerodynamic and aeroacoustic performance assessment of H-rotor darrieus VAWT equipped with wind-lens technology. Energy, 175, 76–97. https://doi.org/10.1016/j.energy.2019.03.066
  13. Du, L., Ingram, G., & Dominy, R. G. (2019). Experimental study of the effects of turbine solidity, blade profile, pitch angle, surface roughness, and aspect ratio on the H-Darrieus wind turbine self-starting and overall performance. Energy Science and Engineering, 7(6), 2421–2436. https://doi.org/10.1002/ese3.430
  14. Gorle, J. M. R., Chatellier, L., Pons, F., & Ba, M. (2021). Sensitivity analysis of the performance of a Darrieus hydrokinetic turbine in uncertain operating conditions. Sustainable Energy Technologies and Assessments, 46. https://doi.org/10.1016/j.seta.2021.101247
  15. Guevara-Munoz, A., Hincapie-Zuluaga, D., Rio, J. S. Del, Rodriguez-Cabal, M. A., & Torres-Lopez, E. (2023). Numerical Comparison and Efficiency Analysis of Three Vertical Axis Turbine of H-Darrieus Type. EUREKA, Physics and Engineering, 2023(2), 28–39. https://doi.org/10.21303/2461-4262.2023.002593
  16. Guney, M. S. (2011). Evaluation and measures to increase performance coefficient of hydrokinetic turbines. Renewable and Sustainable Energy Reviews,15(8), 3669–3675. https://doi.org/10.1016/j.rser.2011.07.009
  17. Hadad, Y., Ramakrishnan, B., Pejman, R., Rangarajan, S., Chiarot, P. R., Pattamatta, A., & Sammakia, B. (2019). Three-objective shape optimization and parametric study of a micro-channel heat sink with discrete non-uniform heat flux boundary conditions. Applied Thermal Engineering, 150, 720–737. https://doi.org/10.1016/j.applthermaleng.2018.12.128
  18. Hashem, I., & Mohamed, M. H. (2018). Aerodynamic performance enhancements of H-rotor Darrieus wind turbine. Energy, 142, 531–545. https://doi.org/10.1016/j.energy.2017.10.036
  19. Hassen, O. A., Majeed, H. L., Hussein, M. A., Darwish, S. M., & AlBoridi, O. (2025). Quantum Machine - Learning for Video Compression: An Optimal Video Frames Compression Model using Qutrits Quantum Genetic Algorithm for Video multicast over the Internet. Journal of Cybersecurity and Information Management, 15(2), 43-64
  20. Hoerner, S., Abbaszadeh, S., Maître, T., Cleynen, O., & Thévenin, D. (2019). Characteristics of the fluid–structure interaction within Darrieus water turbines with highly flexible blades. Journal of Fluids and Structures, 88, 13–30. https://doi.org/10.1016/j.jfluidstructs.2019.04.011
  21. Ibrahim, W. I., Mohamed, M. R., Ismail, R. M. T. R., Leung, P. K., Xing, W. W., & Shah, A. A. (2021). Hydrokinetic energy harnessing technologies: A review. Energy Reports, 7, 2021–2042). Elsevier Ltd. https://doi.org/10.1016/j.egyr.2021.04.003
  22. González Díaz, A. J., Geovo Coronado, L. J., & González Doria, Y. E. (2016). Diseño y modelamiento de un aerogenerador Vawt Darrieus tipo H para la zona costera del departamento de Córdoba. Ingeniare, 20, 33–46. https://doi.org/10.18041/1909-2458/ingeniare.20.407
  23. Gorle, J. M. R., Chatellier, L., Pons, F., & Ba, M. (2016). Flow and performance analysis of H-Darrieus hydroturbine in a confined flow: A computational and experimental study. Journal of Fluids and Structures, 66, 382–402. https://doi.org/10.1016/j.jfluidstructs.2016.08.003
  24. Kh-Madhloom, J., Diwan, S. A., & Zainab, A. A. (2020). Smile Detection using Convolutional Neural Network and Fuzzy Logic. J. Inf. Sci. Eng., 36(2), 269-278. https://doi.org/10.6688/JISE.202003_36(2).0007
  25. Khan, M. J., Iqbal, M. T., & Quaicoe, J. E. (2006). Design Considerations of a Straight Bladed Darrieus Rotor for River Current Turbines. 2006 IEEE International Symposium on Industrial Electronics, Montreal, QC, Canada, 2006, pp. 1750-1755, https://doi.org/10.1109/ISIE.2006.295835
  26. Kumar, P. M., Ajit, K. R., Surya, M. R., Srikanth, N., & Lim, T.-C. (2017). On the self starting of Darrieus turbine :An Experimental investigation with secondary rotor. 2017 Asian Conference on Energy, Power and Transportation Electrification (ACEPT), Singapore, 2017, pp. 1-7, https://doi.org/10.1109/ACEPT.2017.816854
  27. Lain, S., & Osorio, C. (2011). Simulation and evaluation of a straight-bladed Darrieus-type cross flow marine turbine. In Article in Journal of Scientific & Industrial Research, 69. https://www.researchgate.net/publication/229050514
  28. Laín, S., Cortés, P., & López, O. D. (2020). Numerical simulation of the flow around a straight blade Darrieus water turbine. Energies, 13(5). https://doi.org/10.3390/en13051137
  29. Li, G., Wu, G., Tan, L., & Fan, H. (2023). A Review: Design and Optimization Approaches of the Darrieus Water Turbine. Sustainability (Switzerland), 15(14). https://doi.org/10.3390/su151411308
  30. Liu, Z., Qu, H., & Shi, H. (2016). Numerical study on self-starting performance of Darrieus vertical axis turbine for tidal stream energy conversion. Energies, 9(10). https://doi.org/10.3390/en9100789
  31. López, O., Meneses, D., Quintero, B., & Laín, S. (2016). Computational study of transient flow around Darrieus type cross flow water turbines. Journal of Renewable and Sustainable Energy, 8(1). https://doi.org/10.1063/1.4940023
  32. Madhloom, J. K., Abd Ghani, M. K., & Baharon, M. R. (2021). Enhancement to the patient's health care image encryption system, using several layers of DNA computing and AES (MLAESDNA). Periodicals of Engineering and Natural Sciences, 9(4), 928-947. https://doi.org/10.21533/pen.v9i4.2448
  33. Marsh, P., Ranmuthugala, D., Penesis, I., & Thomas, G. (2015). Three-dimensional numerical simulations of straight-bladed vertical axis tidal turbines investigating power output, torque ripple and mounting forces. Renewable Energy, 83, 67–77. https://doi.org/10.1016/j.renene.2015.04.014
  34. Lanzafame, R., Mauro, S., Messina, M., & Brusca, S. (2020). Micro H-Darrieus wind turbines: CFD modeling and experimental validation. Energies, 13, 1–23. https://doi.org/10.1063/1.5138842
  35. Mohamed, M. H., Dessoky, A., & Alqurashi, F. (2019). Blade shape effect on the behavior of the H-rotor Darrieus wind turbine: Performance investigation and force analysis. Energy, 179, 1217–1234. https://doi.org/10.1016/j.energy.2019.05.069
  36. Mukhopadhyay, A., Sharma, A., Hossain, A., Roy, S., Singha, S., Modak, D., Gupta, A. K., Shaw, A., Sarkar, A., Paul, N., Sengupta, A. R., & Rakshit, S. (2024). A Review on the Effect of Different Performance Parameters of H-Darrieus Turbines. In G. Choubey, S. Tripathi, V. K. Singh, & P. M. V Subbarao (Eds.), Advances in Thermal Engineering (pp. 195–204). Springer Nature Singapore. https://doi.org/10.1007/978-981-97-4500-5_14
  37. Padricelli, C. (2019). CFD Investigation of counter rotating H-type Darrieus turbines in marine environment [Politecnico di Milano]. http://hdl.handle.net/10589/87083%0A%0A
  38. Patel, V., Eldho, T. I., & Prabhu, S. V. (2017). Experimental investigations on Darrieus straight blade turbine for tidal current application and parametric optimization for hydro farm arrangement. International Journal of Marine Energy, 17, 110–135. https://doi.org/10.1016/j.ijome.2017.01.007
  39. Reddy, K. U., Deb, B., & Roy, B. (2023). Experimental investigation of solidity and blade profile effects on H-Darrieus wind rotor: Performance and self-starting analysis. Journal of Renewable and Sustainable Energy, 15(4), 43306. https://doi.org/10.1063/5.0159494
  40. Saini, G., & Saini, R. P. (2020). Comparative investigations for performance and self-starting characteristics of hybrid and single Darrieus hydrokinetic turbine. Energy Reports, 6, 96–100. https://doi.org/10.1016/j.egyr.2019.11.047
  41. Sengupta, A. R., Biswas, A., & Gupta, R. (2016). Studies of some high solidity symmetrical and unsymmetrical blade H-Darrieus rotors with respect to starting characteristics, dynamic performances and flow physics in low wind streams. Renewable Energy, 93, 536–547. https://doi.org/10.1016/j.renene.2016.03.029
  42. Shimizu, S., Fujii, M., Sasa, K., Koga, E., & Motogi, H. (2016). Starting system for Darrieus water turbine of tidal stream electricity generation. Proceedings of the ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering. Volume 6: Ocean Space Utilization; Ocean Renewable Energy. Busan, South Korea. June 19–24, 2016. V006T09A010. ASME. https://doi.org/10.1115/OMAE2016-55143
  43. Singh, M. A., Biswas, A., & Misra, R. D. (2015). Investigation of self-starting and high rotor solidity on the performance of a three S1210 blade H-type Darrieus rotor. Renewable Energy, 76, 381–387. https://doi.org/10.1016/j.renene.2014.11.027
  44. Velasco, D., López Mejia, O., & Laín, S. (2017). Numerical simulations of active flow control with synthetic jets in a Darrieus turbine. Renewable Energy, 113, 129–140. https://doi.org/10.1016/j.renene.2017.05.075

Last update:

No citation recorded.

Last update: 2025-10-06 16:13:51

No citation recorded.