skip to main content

View PDF Download fulltext

Valorization of olive pruning biomass into high-efficiency activated carbon: CCD optimization and material characterization

Research Laboratory: Process Engineering and Industrial Systems, (LR11ES54), National School of Engineers of Gabes, University of Gabes, 6026, Gabes, Tunisia

Received: 19 Jul 2025; Revised: 25 Oct 2025; Accepted: 26 Nov 2025; Available online: 11 Dec 2025; Published: 1 Jan 2026.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2026 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

This study focuses on the valorization of olive pruning stems (OPS) biomaterial into a high-efficiency adsorbent. The selected preparation method involved chemical activation using phosphoric acid (H₃PO₄) at a concentration of 50%. The effects of four process parameters: impregnation ratio, impregnation time, carbonization temperature and carbonization time, were studied using Central Composite Design (CCD) to optimize the iodine index, methylene blue index and phenol number of the produced AC. These indexes reflect the development of the AC porosity and its adsorption performances. Obtained results indicate that optimal activated carbon can be prepared under the following conditions: an impregnation ratio of 5.5 g/g, an impregnation time of 7 h, a carbonization temperature of 400°C, and a carbonization time of 1.5 h. Obtained activated carbon in these optimum conditions showed an iodine value of   947 mg/g, methylene blue index exceeding 267 mg/g and phenol number of approximately 35.637 mg/g. Based on the N₂ adsorption–desorption isotherm measurements, the optimized sample exhibited a BET surface area of 1604.8 m²/g, a total pore volume of 1.124 cm³/g, and an average pore size diameter of 20.8 nm. These results highlight the suitability of olive pruning rods as a high-quality precursor for producing effective activated carbon, which can be used for wastewater treatment and other applications.

Keywords: Olive pruning stems; Chemical activation; Valorization; Activated carbon; Central Composite Design (CCD); adsorption; iodine index; MB index; phenol index
Funding: no funders

Article Metrics:

  1. Abdelnaeim, M. Y., El Sherif, I. Y., Attia, A. A., Fathy, N. A., El Shahat, M. F. (2016). Impact of chemical activation on the adsorption performance of common reed towards Cu(II) and Cd(II). International Journal of Mineral Processing, 157, 80–88. https://doi.org/10.1016/j.minpro.2016.09.013
  2. Ahmed, M. J., and Hameed, B. H. (2020). Advances in biomass waste valorization. Journal of Cleaner Production, 287, 125011. https://doi.org/10.1016/j.jclepro.2020.125011
  3. Ahmed, M. J., Theydan, S. K. (2012). Physical and chemical characteristics of activated carbon prepared by pyrolysis of chemically treated date stones and its ability to adsorb organics. Powder Technology, 229, 237–245. https://doi.org/10.1016/j.powtec.2012.06.043
  4. Al-Qahtani, K. M., Al-Zahrani, M. A. (2021). Pharmaceutical adsorption. Journal of Molecular Liquids, 334, 116074. https://doi.org/10.1016/j.molliq.2021.116074
  5. Al Ghouti, M. A., Sweleh, A. O. (2019). Optimizing textile dye removal by activated carbon prepared from olive stones. Environmental Technology & Innovation, 16, 100488. https://doi.org/10.1016/j.eti.2019.100488
  6. Alslaibi, T. M., Abustan, I., Ahmad, M. A., Abu Foul, A. A. (2013). A review: Production of activated carbon from agricultural by products via conventional and microwave heating. Journal of Chemical Technology & Biotechnology, 88(7), 1183–1190. https://doi.org/10.1002/jctb.4028
  7. Arokiadass, R., Palaniradja, K., Alagumoorthi, N. (2012). Prediction and optimization of end milling process parameters of cast aluminium based MMC. Transactions of Nonferrous Metals Society of China, 22(7), 1568-1574. https://doi.org/10.1016/S1003-6326(11)61356-9
  8. Araujo, C. S., Alves, V. N., Rezende, H. C. (2018). Activated carbon from coconut fibers for dye removal. Journal of Environmental Chemical Engineering, 6(2), 1714–1721
  9. ASTM D4607-94, Standard test method for determination of iodine number of activated carbon, ASTM International, 2006
  10. AWWA B600-90, Standard for sodium hydroxide (caustic soda), American Water Works Association, 1990
  11. Balogoun, C., Bawa, M., Osseni, S., Aina, M. (2015). Preparation of activated carbons by chemical means with phosphoric acid based on coconut shell. International Journal of Biological and Chemical Sciences, 9(1), 563. https://doi.org/10.4314/ijbcs.v9i1.48
  12. Bayuo, J., Abukari, M. A., Pelig-Ba, K. B. (2020). Optimization using central composite design (CCD) of response surface methodology (RSM) for biosorption of hexavalent chromium from aqueous media. Applied Water Science, 10, 135. https://doi.org/10.1007/s13201-020-01213-3
  13. Bedia, J., Peñas-Garzón, M., Gómez-Avilés, A., Rodríguez, J. J., Belver, C. (2020). Review on activated carbons by chemical activation with FeCl₃. C - Journal of Carbon Research, 6(2), 21. https://doi.org/10.3390/c6020021
  14. Bhattacharya, S. S., Bhattacharya, A., Singh, N. (2019). Functionalization of activated carbon: A review of synthesis methods, properties, and applications. Environmental Chemistry Letters, 17(1), 287-303. https://doi.org/10.1007/s10311-018-00820-w
  15. Bohli, T., Bourezgui, A., Maiz, F., Ouederni, A., (2025). Removal of a pharmaceutical compound using olive stone-derived activated carbon: Artificial neural network modeling, equilibrium analysis, and fixed-bed kinetic assessment. MaterialsToday Communications, 45, p. 112200. https://doi.org/10.1016/j.mtcomm.2025.112200
  16. Bohli, T., Ouederni A., Villaescusa, I., (2017). Simultaneous adsorption behavior of heavy metals onto microporous olive stones activated carbon: analysis of metal interactions. Euro-Mediterr J Environ Integr, 2,19. https://doi.org/10.1007/s41207-017-0030-0
  17. Bohli, T., Ouederni, A., Fiol, N., Villaescusa, I., (2015). Evaluation of an activated carbon from olive stones used as an adsorbent for heavy metal removal from aqueous phases, Comptes Rendus Chimie 18(1), 88-99. https://doi.org/10.1016/j.crci.2014.05.009
  18. Bouchelta, C., Salah Medjram M., Bertrand O., Bellat P.J. (2008). Preparation and characterization of activated carbon from date stones by physical activation. Journal of Analytical and Applied Pyrolysis, 82 (1), 70–77. https://doi.org/10.1016/j.jaap.2007.12.009
  19. Box, G. E. P., Wilson, K. B. (1951). On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society. Series B (Methodological), 13(1), 1–45. https://doi.org/10.1111/j.2517-6161.1951.tb00067.x
  20. Chelladurai, S. J. S., Murugan, K., Ray, A. P., Upadhyaya, M., Narasimharaj, V., Gnanasekaran, S. (2021). Optimization of process parameters using response surface methodology: A review. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.06.466
  21. Chen, X., Pei, Y., Wang, X., Zhou, W., Jiang, L. (2024). Response surface methodology—Central composite design optimization sugarcane bagasse activated carbon under varying microwave-assisted pyrolysis conditions. Processes, 12(3), 497. https://doi.org/10.3390/pr12030497
  22. Chen, X., Chen, G., Chen, L., Chen, Y., Lehmann, J., McBride, M. B., Hay, A. G. (2022)
  23. Banana peel biochar for enhanced removal of ammonium and phosphate from aqueous solutions. Journal of Environmental Management, 302, 114073. https://doi.org/10.1016/j.jenvman.2021.114073
  24. Daud, W. M. A. W., Ali, W. S. W. (2004). Comparison on pore development of activated carbon produced from palm shell and coconut shell. Bioresource Technology, 93 (1), 63–69. https://doi.org/10.1016/j.biortech.2003.09.015
  25. Debbache, H., et al. (2024). Chemical activation to produce activated carbon: influence of activating-agent type, impregnation ratio, pyrolysis temperature and residence time on textural and adsorption properties. Cellulose Chemistry and Technology, 58(9-10), 1149-1161
  26. Devi, R., Kumar,V., Kumar, S., Bulla, M. (2023). Recent advancement in biomass-derived activated carbon for waste water treatment, energy storage, and gas purification : a review, Journal of Materials Science 58(30):1-24. https://doi.org/10.1007/s10853-023-08773-0
  27. El-Hendawy, A. N. A. (2006). Surface and adsorptive properties of carbons prepared from biomass. Journal of Analytical and Applied Pyrolysis, 75 (2), 159–166. https://doi.org/10.1016/j.jaap.2005.05.004
  28. El-Sayed, S.A., Khass, T.M. and Mostafa, M.E. (2024) 'Thermal degradation behaviour and chemical kinetic characteristics of biomass pyrolysis using TG/DTG/DTA techniques', Biomass Conversion and Biorefinery, 14, 17779-17803. https://doi.org/10.1007/s13399-023-03926-2
  29. González-Serrano, E., Gómez-Serrano, V., Valenzuela-Calahorro, C., González-García, C. M. (2021). Surface chemistry studies on activated carbon by wet oxidation: Effect of oxygen surface groups on aqueous-phase adsorption. Carbon, 179, 1–10. https://doi.org/10.1016/j.carbon.2021.03.048
  30. González-García, P. (2018). Lignocellulosics precursors review. Renewable and Sustainable Energy Reviews, 82, 1393-1414. https://doi.org/10.1016/j.rser.2017.04.117
  31. Gupta, V. K., Verma, N. (2019). Sustainable production of activated carbon from biomass. Journal of Environmental Management, 240, 25–34. https://doi.org/10.1016/j.jenvman.2019.03.062
  32. Hassan, M. M., Carr, C. M., Islam, M. S. (2015). A critical review on recent advancements of the removal of reactive dyes. Chemosphere, 209, 201-219. https://doi.org/10.1016/j.chemosphere.2018.06.043
  33. Hendronursitoa, Y., Astutib, W., Sabarmana, H., Santoso I. (2025) A porous activated carbon derived from banana peel by hydrothermal activation two-step methods. Int. J. Renew. Energy Dev.(14)2, 322-331. https://doi.org/10.61435/ijred.2025.60847
  34. Jaria, G., Silva, C.P., Oliveira, J.A.B.P., Santos, S.M., Gil, M., V., Otero,M., Calisto,V., Esteves V.I. (2019). Production of highly efficient activated carbons from industrial wastes for the removal of pharmaceuticals from water—A full factorial design, J. of Hazardous Materials, 370 (15), 212-218. https://doi.org/10.1016/j.jhazmat.2018.02.053
  35. Jedynak, K., & Charmas, B. (2024). Application of activated carbons obtained from polymer waste for the adsorption of dyes from aqueous solutions. Materials, 17(3), 748. https://doi.org/10.3390/ma17030748
  36. Jeguirim, M., Limousy, L, and S. Bennici, S. (2020). Biomass-derived chars for energy applications, Renew. Sustain. Energy Rev., 108, pp. 253–273. https://doi.org/10.1016/j.rser.2019.03.057
  37. Kamińska, A., Miądlicki,P., Kiełbasa, K., Kujbida, M., Sreńscek-Nazzal, J., Wróbel, R.J., Wróblewska,A. (2021). Activated Carbons Obtained from Orange Peels, Coffee Grounds, and Sunflower Husks—Comparison of Physicochemical Properties and Activity in the Alpha-Pinene Isomerization Process. Materials 14(23), 7448; https://doi.org/10.3390/ma14237448
  38. Kang, DJ, Kim, KW, Hong, BU, Park, JE. (2024). Production of high specific surface area activated carbon from tangerine peels and utilization of its by-products. Energies, 17(23), 6148. https://doi.org/10.3390/en17236148
  39. Kim, J.-H., Kim, Y.-J., Kang, S.-C., Lee, H.-M., Kim, B.-J. (2023). Preparation and characterization of asphalt pitch derived activated carbons with enhanced electrochemical performance as EDLC electrode materials. Minerals, 13(6), Article 802. https://doi.org/10.3390/min13060802
  40. Khalid, A. A., Gora, A. M., Rafindadi, A. D., Haruna, S. I., Ibrahim, Y. E. (2024). Response Surface Methodology Approach for the Prediction and Optimization of the Mechanical Properties of Sustainable Laterized Concrete Incorporating Eco-Friendly Calcium Carbide Waste. Infrastructures, 9(11), 206. https://doi.org/10.3390/infrastructures9110206
  41. Li, B., Hu, J., Xiong, H., Xiao, Y. (2020). Application and properties of microporous carbons activated by ZnCl₂: Adsorption behavior and activation mechanism. ACS Omega, 5(18), 9398–9407. https://doi.org/10.1021/acsomega.0c00461
  42. Liu, G., Zhang, C., Dou, D., Wei, Y. (2021). Modeling and optimization of activated carbon carbonization process based on support vector machine.Physicochemical Problems of Mineral Processing. https://doi.org/10.37190/PPMP/133057
  43. Liu, S., Chen, Z., Shen, Y., Chen, H., Li, Z., Cai, L., Yang, H., Zhu, C., Shen, J., Kang, J., Yan, P., (2024). Simultaneous regeneration of activated carbon and removal of adsorbed atrazine by ozonation process: From laboratory scale to pilot studies. Water Research, 251, 1,121113. https://doi.org/10.1016/j.watres.2024.121113
  44. Liu, W.J., Jiang, H., & Yu, H.-Q. (2015). Development of biochar-based functional materials: Toward a sustainable platform carbon material. Chemical Reviews, 115(22), 12251–12285. https://doi.org/10.1021/acs.chemrev.5b00195
  45. Lütke, S. F., Igansi, A. V, Pegoraro, L., Dotto, G. L., Pinto, L. A. A., Cadaval, T. R. S. (2019). Journal of Environmental Chemical Engineering Preparation of activated carbon from black wattle bark waste and its application for phenol adsorption. Journal of Environmental Chemical Engineering, 7(5), 103396. https://doi.org/10.1016/j.jece.2019.103396
  46. Lix, L. M., Keselman, J. C., & Keselman, H. J. (1996). Consequences of assumption violations revisited: A quantitative review of alternatives to the one-way ANOVA F-test. Review of Educational Research, 66(4), 579-619. https://doi.org/10.3102/00346543066004579
  47. Louarrat, M., Enaime, G., Baçaoui, A., Yaacoubi, A., Blin, J., Martin, L. (2019). Optimization of conditions for the preparation of activated carbon from olive stones for application in gold recovery. Journal of the Southern African Institute of Mining and Metallurgy, 119(3), 281–288. https://doi.org/10.17159/2411-9717/2019/v119n3a9
  48. Maceiras, R., Álvarez, E., & Cancela, M. Á. (2017). Applications of activated carbon in environmental protection. Environmental Science and Pollution Research, 24(6), 5237-5247. https://doi.org/10.1007/s11356-016-8224-6
  49. Molina-Sabio, M., & Rodríguez-Reinoso, F. (2004). Role of chemical activation in the development of carbon porosity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 241(1–3), 15–25. https://doi.org/10.1016/j.colsurfa.2004.04.007
  50. Namane, A., Mekarzia, A., Benrachedi, K., Belhaneche-Bensemra, N., Hellal, A. (2005). Determination of the adsorption capacity of activated carbon made from coffee grounds by chemical activation with ZnCl₂ and H₃PO₄. Journal of Hazardous Materials, 119(1–3), 189–194. https://doi.org/10.1016/j.jhazmat.2004.12.006
  51. Paz, E. C. S., Paschoalato, C. F., Arruda, M. G., Silva, G. G., Santos, M. L. G., Pedroza, M. M., Oliveira, L. R. A. (2023). Production and characterization of the solid product of coconut pyrolysis. Biomass Conversion and Biorefinery, 13, 6317–6329. https://doi.org/10.1007/s13399-021-01561-3
  52. Ponce, M. F., Mamani, A., Jerez, F., Castilla, J., Ramos, P. B., Acosta, G. G., Sardella, M. F., Bavio, M. A. (2022). Activated carbon from olive tree pruning residue for symmetric solid-state supercapacitor. Energy, 260, 125092. https://doi.org/10.1016/j.energy.2022.125092
  53. Rahman, M.S., Bansal, N., Rahman, M.H., Mortula, M. (2025). Date Seed-Derived Activated Carbon: A Comparative Study on Heavy Metal Removal from Aqueous Solutions, Appl. Sci., 15(6), 3257. https://doi.org/10.3390/app15063257
  54. Raposo, F., De la Rubia, M. A. Borja, R. (2008). Methylene Blue Number as Useful Indicator to Evaluate the Adsorptive Capacity of Granular Activated Carbon in Batch Mode: Influence of Adsorbate/Adsorbent Mass Ratio and Particle Size. Journal of Hazardous Materials 165(1-3):291-9. https://doi.org/10.1016/j.jhazmat.2008.09.106
  55. Saadi, W., Najar Souissi, S., Ouederni, A., (2016) Pomegranate Peels Precursor Used in the Synthesis of Activated Carbon: Application in the Wastewater Treatment, J. Int. Environmental Application & Science, 11(4), 318-330. https://dergipark.org.tr/tr/download/article-file/570653
  56. Sun, Z., Wang, M., Fan, J., Zhou, Y., Zhang, L. (2024), Regeneration Performance of Activated Carbon for Desulfurization. Appleid Sciences 10(17):6107. https://doi.org/10.3390/app10176107
  57. Tan, X., Liu, Y., & Zeng, G. (2016). Application of biochar for pollutant removal. Environmental Science and Pollution Research, 23(17), 16904–16917. https://doi.org/10.1007/s11356-016-6964-y
  58. Trache, D., Khimeche, K., Mezroua, A., Benziane, M., (2016). Physicochemical properties of microcrystalline nitrocellulose from Alfa grass fibres and its thermal stability. Journal of Thermal Analysis and Calorimetry, 124(3):1485–1496. https://doi.org/10.1007/s10973-016-5293-1
  59. Wang, Y., Jiang, H., Guo, Z., Ma, H., Wang, S., Wang, H., Song, S., Zhang, J., Yin, Y., Wu, H., Jiang, Z., & Guiver, M. D. (2023). Advances in organic microporous membranes for CO₂ separation. Energy & Environmental Science, 16(1), 53–75. https://doi.org/10.1039/D2EE02449G
  60. Yaashikaa, P. R., Kumar, P. S., Varjani, S. J., & Saravanan, A. (2020). A review on photochemical, biochemical and electrochemical transformation of CO2 into value-added products. Journal of CO2 Utilization, 33, 131–147. https://doi.org/10.1016/j.jcou.2019.05.017
  61. Yakout, S. M., & El-Deen, G. S. (2012). Characterization of activated carbon from olive stones. Arabian Journal of Chemistry, 5(2), 219-229. https://doi.org/10.1016/j.arabjc.2010.09.003
  62. Zaid, H., Al-Sharify, Z., Hamzah, M. H., & Rushdi, S. (2024). Optimization of different chemical processes using response surface methodology – a review. Journal of Engineering and Sustainable Development, 26(6). https://doi.org/10.31272/jeasd.26.6.1
  63. Zakaria, R., Jamalluddin, N. A., & Abu Bakar, M. Z. (2021). Effect of impregnation ratio and activation temperature on the yield and adsorption performance of mangrove-based activated carbon for methylene blue removal. Results in Materials, 10, 100183. https://doi.org/10.1016/j.rinma.2021.100183
  64. Zhao, S., Yan, T., & Wang, Z. (2017). Facile control of corncobs-based carbons with eutectic salt ZnCl₂/NaCl templated for the adsorption of organic aldehyde. BioResources, 14(4), 8835–8848. https://doi.org/10.15376/biores.14.4.8835-8848
  65. Zhou, Y., Zhang, J., Wang, L., Cui, X., Liu, X., Wong, S. S., & Luo, Y. (2021)
  66. Self assembled iron containing mordenite monolith for carbon dioxide sieving. Science, 373(6557), 315–320. https://doi.org/10.1126/science.aax5776

Last update:

No citation recorded.

Last update: 2026-01-11 21:10:49

No citation recorded.