skip to main content

View PDF Download fulltext

Comparative study of g-C₃N₄/Cu₂O and BiVO₄/Cu₂O photocathodes for enhanced electricity generation and hydrogen evolution in photocatalytic fuel cells

1Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia

2Department of Chemical Engineering, Faculty of Engineering, Universitas Singaperbanga Karawang, Karawang 41361, Indonesia

3Department of Chemical Engineering, Institut Teknologi Indonesia, Tangerang Selatan 15314, Indonesia

4 Research Center for Nanotechnology System, National Research and Innovation Agency (BRIN), South Tangerang 15314, Indonesia

View all affiliations
Received: 22 Sep 2025; Revised: 18 Nov 2025; Accepted: 23 Dec 2025; Available online: 30 Dec 2025; Published: 1 Jan 2026.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2026 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

The preparation of good photocathodes is a crucial issue regarding promoting the performance of photocatalytic fuel cell (PFC) systems for environmentally protective energy conversion approaches. In the present work, a comparative study of Cu₂O-based photocathodes jointly modified with graphitic carbon nitride (g-C₃N₄) and bismuth vanadate (BiVO₄) was performed to ascertain their competence towards concomitant electricity generation and hydrogen evolution in an integrated single-chamber photocatalytic fuel cell. Cu substrates were anodized to produce ordered Cu₂O layers, modified with immersion treatments, and then low-temperature calcination. The as-prepared products were characterized in detail by XRD, HR-TEM, UV–Vis DRS, PL spectra, and XPS analyses, as well as photoelectrochemical measurements to gain insight into crystallinity, morphology, photocatalytic activity (optical absorption), electronic structure, and charge recombination. Results revealed that among the pristine Cu₂O and g-C₃N₄/Cu₂O, superior charge separation was exhibited on the BiVO₄/Cu₂O photocathode, along with better power density and hydrogen evolution. The highest power density of BiVO₄/Cu₂O was 0.05625 mW cm⁻² and 13.71 mmol.m⁻² for hydrogen evolution compared to both Cu₂O (0.0375 mW cm⁻²;11.19 mmol.m⁻²) and g-C₃N₄/Cu₂O (0.026 mW cm⁻²; 8.1616 mmol m-2). This observation was supported by the analysis of the photoluminescence spectra: BiVO₄/Cu₂O had PL intensity of 325 a.u., lower than Cu₂O (400 a.u.) and g-C₃N₄/Cu₂O (650 a.u.), validating that this sample more effectively suppressed electron–hole recombination and electron transport mechanism. The enhanced photocatalytic activity of BiVO₄/Cu₂O is associated with the generation of a p-n heterojunction, which accumulates a built-in electric field to drive effective charge separation and offers visible-light sensitization upon its larger absorption spectrum that is beneficial for not only promoting hydrogen evolution efficiency but also improving electricity production in PFC systems.

Keywords: Cu₂O; photocathode; hydrogen evolution; photocatalytic fuel cell; Z-scheme

Article Metrics:

  1. Ahmed, A. M., Abdalla, E. M., & Shaban, M. (2020). Simple and Low-Cost Synthesis of Ba-Doped CuO Thin Films for Highly Efficient Solar Generation of Hydrogen. Journal of Physical Chemistry C, 124(41), 22347–22356. https://doi.org/10.1021/acs.jpcc.0c04760
  2. Alhaddad, M., Navarro, R. M., Hussein, M. A., & Mohamed, R. M. (2020). Visible light production of hydrogen from glycerol over Cu2O-gC3N4 nanocomposites with enhanced photocatalytic efficiency. Journal of Materials Research and Technology, 9(6), 15335–15345. https://doi.org/10.1016/j.jmrt.2020.10.093
  3. Anandan, S., Wu, J. J., Bahnemann, D., Emeline, A., & Ashokkumar, M. (2017). Crumpled Cu2O-g-C3N4 nanosheets for hydrogen evolution catalysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 527(May),34–41. https://doi.org/10.1016/j.colsurfa.2017.05.007
  4. Bachri, M. F., Husein, S., & Heru, B. (2025). Development of WO 3 / TiO 2 -NT / Ti photoanode for simultaneously POME degradation , electricity generation , and hydrogen production in a photocatalysis-fuel cell system. 15(3), 420–428. https://doi.org/10.61435/ijred.2025.6097
  5. Bae, H., Bhamu, K. C., Mane, P., Burungale, V., Kumar, N., Lee, S. H., Ryu, S. W., Kang, S. G., & Ha, J. S. (2024). Rationally designed core-shell of 2D-g-C3N4/Cu2O nanowires heterojunction photocathode for efficient photoelectrochemical water splitting. Materials Today Energy, 40, 101484. https://doi.org/10.1016/j.mtener.2023.101484
  6. Chen, J., Shen, S., Guo, P., Wang, M., Wu, P., Wang, X., & Guo, L. (2014). In-situ reduction synthesis of nano-sized Cu2O particles modifying g-C3N4 for enhanced photocatalytic hydrogen production. Applied Catalysis B: Environmental, 152–153(1), 335–341. https://doi.org/10.1016/j.apcatb.2014.01.047
  7. Cheng, Y., Yu, T., Lei, X., Li, J., You, J., Liu, X., & Guo, R. (2025). Construction of charge transport channels and strong interfacial electric fields in BiVO4/Cu2O Type-II heterojunction for enhanced piezo-photocatalytic performance. Journal of Environmental Chemical Engineering, 13(3), 116763. https://doi.org/10.1016/j.jece.2025.116763
  8. Dai, B., Li, Y., Xu, J., Sun, C., Li, S., & Zhao, W. (2022). Photocatalytic oxidation of tetracycline, reduction of hexavalent chromium and hydrogen evolution by Cu2O/g-C3N4 S-scheme photocatalyst: Performance and mechanism insight. Applied Surface Science, 592(March), 153309. https://doi.org/10.1016/j.apsusc.2022.153309
  9. Ge, J., Zhang, Y., Heo, Y. J., & Park, S. J. (2019). Advanced design and synthesis of composite photocatalysts for the remediation of wastewater: A review. In Catalysts (Vol. 9, Issue 2). https://doi.org/10.3390/catal9020122
  10. Hamdani, I. R., & Bhaskarwar, A. N. (2021). Cu2O nanowires based p-n homojunction photocathode for improved current density and hydrogen generation through solar-water splitting. International Journal of Hydrogen Energy, 46(55), 28064–28077. https://doi.org/10.1016/j.ijhydene.2021.06.067
  11. Hayat, A., Sohail, M., El Jery, A., Al-Zaydi, K. M., Alshammari, K. F., Khan, J., Ali, H., Ajmal, Z., Taha, T. A., Ud Din, I., Altamimi, R., Hussein, M. A., Al-Hadeethi, Y., Orooji, Y., & Ansari, M. Z. (2023). Different Dimensionalities, Morphological Advancements and Engineering of g-C3N4-Based Nanomaterials for Energy Conversion and Storage. Chemical Record, 23(5). https://doi.org/10.1002/tcr.202200171
  12. He, Y., Zhang, C., Hu, J., & Leung, M. K. H. (2019). NiFe-layered double hydroxide decorated BiVO4 photoanode based bi-functional solar-light driven dual-photoelectrode photocatalytic fuel cell. Applied Energy, 255, 113770. https://doi.org/https://doi.org/10.1016/j.apenergy.2019.113770
  13. Husein, S., Slamet, & Dewi, E. L. (2024). A review on graphite carbon nitride (g-C3N4)-based composite for antibiotics and dye degradation and hydrogen production. Waste Disposal & Sustainable Energy, 6(4), 603–635. https://doi.org/10.1007/s42768-024-00198-y
  14. Kee, M. W., Lam, S. M., Sin, J. C., Zeng, H., & Mohamed, A. R. (2020). Explicating charge transfer dynamics in anodic TiO2/ZnO/Zn photocatalytic fuel cell for ameliorated palm oil mill effluent treatment and synchronized energy generation. Journal of Photochemistry and Photobiology A: Chemistry, 391(September 2019), 112353. https://doi.org/10.1016/j.jphotochem.2019.112353
  15. Khan, N., Stelo, F., Santos, G. H. C., Rossi, L. M., Gonçalves, R. V., & Wender, H. (2022). Recent advances on Z-scheme engineered BiVO4-based semiconductor photocatalysts for CO2 reduction: A review. Applied Surface Science Advances, 11(March), 100289. https://doi.org/10.1016/j.apsadv.2022.100289
  16. Kumar, S., Parlett, C. M. A., Isaacs, M. A., Jowett, D. V., Douthwaite, R. E., Cockett, M. C. R., & Lee, A. F. (2016). Facile synthesis of hierarchical Cu2O nanocubes as visible light photocatalysts. Applied Catalysis B: Environmental, 189, 226–232. https://doi.org/10.1016/j.apcatb.2016.02.038
  17. Li, G., Jin, Y., Li, Y., Cui, W., An, H., Li, R., & Li, C. (2025). Cu/Cu2O nanoparticles supported on electrospun carbon nanofibers as high-performance cathodic catalyst for photocatalytic fuel cell. Journal of Colloid and Interface Science, 699(P2), 138270. https://doi.org/10.1016/j.jcis.2025.138270
  18. Li, N., Mao, S., Yan, W., & Zhang, J. (2024). Photo-induced in-situ synthesis of Cu2O@C nanocomposite for efficient photocatalytic evolution of hydrogen. Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology , 52(5), 698–706. https://doi.org/10.1016/S1872-5813(23)60400-1
  19. Li, R., Chen, H., Xiong, J., Xu, X., Cheng, J., Liu, X., & Liu, G. (2020). A mini review on bismuth-based z-scheme photocatalysts. Materials, 13(22), 1–29. https://doi.org/10.3390/ma13225057
  20. Lin, X., Yu, L., Yan, L., Li, H., Yan, Y., Liu, C., & Zhai, H. (2014). Visible light photocatalytic activity of BiVO4 particles with different morphologies. Solid State Sciences, 32, 61–66. https://doi.org/10.1016/j.solidstatesciences.2014.03.018
  21. Liu, W., Liu, X., Xin, S., Wang, Y., Huo, S., Fu, W., Zhao, Q., Gao, M., & Xie, H. (2024). Photocatalytic fuel cell assisted by Fenton-like reaction for p-Chloronitrobenzen degradation and electricity production through S-scheme heterojunction C3N5 modified TNAs photoanode: Performance, DFT calculation and mechanism. Applied Energy, 358. https://doi.org/10.1016/j.apenergy.2023.122552
  22. Lu, B. B., Lu, J. C., Zhao, Q. Y., Wang, R., Chen, Z. L., Guan, J. Q., Liu, H., Fu, Y., & Ye, F. (2025). Enhanced electron transport through hydrogen bonds and Ag nanoparticles in the PCN-222/Ag/COF core–shell photocatalyst for efficient oxytetracycline degradation. Journal of Cleaner Production, 494(February), 144995. https://doi.org/10.1016/j.jclepro.2025.144995
  23. Lv, Y., Shi, B., Su, X., & Tian, L. (2018). Synthesis and characterization of Cu2O nanowires array via an anodic oxidation method. Materials Letters, 212, 122–125. https://doi.org/10.1016/j.matlet.2017.09.120
  24. Mamari, S. Al, Kuvarega, A. T., & Selvaraj, R. (2021). Recent advancements in the development of graphitic like carbon nitride (G-C3N4) photocatalyst for volatile organic compounds removal: A review. Desalination and Water Treatment, 235, 141–176. https://doi.org/10.5004/dwt.2021.27633
  25. Min, S., Wang, F., Jin, Z., & Xu, J. (2014). Cu2O nanoparticles decorated BiVO4 as an effective visible-light-driven p-n heterojunction photocatalyst for methylene blue degradation. Superlattices and Microstructures, 74, 294–307. https://doi.org/10.1016/j.spmi.2014.07.003
  26. Muttaqin, R., Pratiwi, R., Ratnawati, Dewi, E. L., Ibadurrohman, M., & Slamet. (2022). Degradation of methylene blue-ciprofloxacin and hydrogen production simultaneously using combination of electrocoagulation and photocatalytic process with Fe-TiNTAs. International Journal of Hydrogen Energy, 47(42), 18272–18284. https://doi.org/10.1016/j.ijhydene.2022.04.031
  27. Ni, N., Li, H., He, L., Zhou, J., Sang, Z., Liu, Y., du, S., Wang, Q., & Tong, Y. (2022). Structures and photocatalytic activities of bismuth oxyhalides nanoparticles developed by utilizing a simple reaction. Materials Science and Engineering: B, 286(September), 116031. https://doi.org/10.1016/j.mseb.2022.116031
  28. Pratiwi, R., Ibadurrohman, M., Dewi, E. L., & Slamet. (2023). A novel approach in the synthesis of CdS/titania nanotubes array nanocomposites to obtain better photocatalyst performance. Communications in Science and Technology, 8(1), 16–24. https://doi.org/10.21924/cst.8.1.2023.1049
  29. Rehan, M. A., Li, G., Liang, H., & Ali, M. (2025). Recent advances in hybrid photocatalysts for efficient solar photocatalytic hydrogen production. International Journal of Hydrogen Energy, 97(August 2024), 920–949. https://doi.org/10.1016/j.ijhydene.2024.11.420
  30. Shu, X., Wang, R., Yang, L., Liu, S., Yin, Y., Liang, X., Hu, K., & Zhang, M. (2025). Bifunctional BiVO4/Cu2O photoelectrode for bias-free solar water splitting tandem cells. Solar Energy Materials and Solar Cells, 282(December 2024), 113386. https://doi.org/10.1016/j.solmat.2024.113386
  31. Sienkiewicz, A., Wanag, A., Kusiak-Nejman, E., Ekiert, E., Rokicka-Konieczna, P., & Morawski, A. W. (2021). Effect of calcination on the photocatalytic activity and stability of TiO2photocatalysts modified with APTES. Journal of Environmental Chemical Engineering, 9(1), 104794. https://doi.org/10.1016/j.jece.2020.104794
  32. Slamet, S., Pelawi, L. F., Ibadurrohman, M., Yudianti, R., & Ratnawati. (2022). Simultaneous Decolorization of Tartrazine and Production of H2 in a Combined Electrocoagulation and Photocatalytic Processes using CuO-TiO2 Nanotube Arrays: Literature Review and Experiment. Indonesian Journal of Science and Technology, 7(3), 385–404. https://doi.org/10.17509/ijost.v7i3.51315
  33. Uma, B., Anantharaju, K. S., Renuka, L., Nagabhushana, H., Malini, S., More, S. S., Vidya, Y. S., & Meena, S. (2021). Controlled synthesis of (CuO-Cu2O)Cu/ZnO multi oxide nanocomposites by facile combustion route: A potential photocatalytic, antimicrobial and anticancer activity. Ceramics International, 47(10), 14829–14844. https://doi.org/10.1016/j.ceramint.2020.09.223
  34. Wang, A., Shen, S., Zhao, Y., & Wu, W. (2015). Preparation and characterizations of BiVO4/reduced graphene oxide nanocomposites with higher visible light reduction activities. Journal of Colloid and Interface Science, 445, 330–336. https://doi.org/10.1016/j.jcis.2015.01.017
  35. Wang, Z., Lin, Z., Shen, S., Zhong, W., & Cao, S. (2021). Advances in designing heterojunction photocatalytic materials. Chinese Journal of Catalysis, 42(5), 710–730. https://doi.org/10.1016/S1872-2067(20)63698-1
  36. Yang, B., Wang, Z., Zhao, J., Sun, X., Wang, R., Liao, G., & Jia, X. (2021). 1D/2D carbon-doped nanowire/ultra-thin nanosheet g-C3N4 isotype heterojunction for effective and durable photocatalytic H2 evolution. International Journal of Hydrogen Energy, 46(50), 25436–25447. https://doi.org/10.1016/j.ijhydene.2021.05.066
  37. Yu, H., Wang, Y., & Wang, X. (2024). Synthesis of a Z-scheme photocatalyst (P-doped g-C3N4/Bi3+-doped Ag3PO4) and its photocatalytic performance. Journal of Industrial and Engineering Chemistry, 130, 436–445. https://doi.org/10.1016/j.jiec.2023.09.049
  38. Zeng, C., Tsui, L. S., Lam, F. L. Y., Wu, T., & Yip, A. C. K. (2024). Revisiting the crucial roles of oxygen vacancies in photo/electro-catalytic degradation of aqueous organic pollutants. Applied Catalysis O: Open, 190(March), 206930. https://doi.org/10.1016/j.apcato.2024.206930
  39. Zhang, J., Shi, T., Liu, T., Gao, F., Cai, D., Liu, P., Yang, S., & zhang, Y. (2024). Design and synthesis of a UV–vis-NIR response heterostructure system: For efficient solar energy conversion and BPA photocatalytic degradation. Applied Surface Science, 653(December 2023), 159346. https://doi.org/10.1016/j.apsusc.2024.159346
  40. Zhang, P., Wang, T., & Zeng, H. (2017). Design of Cu-Cu 2 O/g-C 3 N 4 nanocomponent photocatalysts for hydrogen evolution under visible light irradiation using water-soluble Erythrosin B dye sensitization. Applied Surface Science, 391, 404–414. https://doi.org/10.1016/j.apsusc.2016.05.162
  41. Zhang, Y., Zhang, Z., Zhang, Y., Li, Y., & Yuan, Y. (2023). Shape-dependent synthesis and photocatalytic degradation by Cu2O nanocrystals: Kinetics and photocatalytic mechanism. Journal of Colloid and Interface Science, 651(July), 117–127. https://doi.org/10.1016/j.jcis.2023.07.196
  42. Zhou, J., Tian, Y., Gu, H., & Jiang, B. (2025). Photocatalytic hydrogen evolution: Recent advances in materials, modifications, and photothermal synergy. International Journal of Hydrogen Energy, 115(March), 113–130. https://doi.org/10.1016/j.ijhydene.2025.03.088

Last update:

No citation recorded.

Last update: 2026-01-12 16:49:58

No citation recorded.