Guangdong Power Grid Corp, Dongguan Power Supply Bureau, Dongguan, 523000, China
BibTex Citation Data :
@article{IJRED60669, author = {Hong Liu and Yongwei Su and Kaijing Cai and Yingkang Mo}, title = {Low-carbon dispatch optimization of wind-solar-thermal-storage multi-energy system based on stochastic chance constraints and carbon trading mechanism}, journal = {International Journal of Renewable Energy Development}, volume = {14}, number = {2}, year = {2025}, keywords = {Wind-solar-thermal-storage system; Economic dispatch; Carbon trading; Chance-constrained programming; Stochastic simulation particle swarm optimization}, abstract = { To improve the low-carbon economic performance of renewable energy-dominated power systems, a multi-energy coordinated optimization dispatch model for wind, solar, thermal, and storage systems considering uncertainties on both the supply and demand sides is proposed. This paper comprehensively considers the economic costs of thermal power unit operation, wind and solar power curtailment, energy storage operation, carbon trading and spinning reserve. The model incorporates a penalizing carbon trading mechanism and uses a stochastic chance-constrained approach to handle fluctuations in wind and solar power generation as well as uncertainties in load forecasting. The study, based on the IEEE 30-bus system, is solved using a stochastic simulation particle swarm optimization algorithm. Results show that after introducing the carbon trading mechanism, the system's carbon emissions were reduced by 8.35%, wind and solar curtailment penalties were reduced by 65.48%, and overall costs decreased by 14.94%. Additionally, the chance-constrained model effectively reduced the system's reserve capacity requirements, with reserve capacity decreasing by 31.84%, leading to a further reduction of 26.83% in overall costs. In the scenario of combined wind-solar-thermal-storage output, the wind and solar curtailment rate dropped to 7.37%, and carbon emissions decreased to 6474.69 tons. Through the \"energy shifting\" function, the energy storage system provided effective support during peak loads, further optimizing the dispatch outcomes. }, pages = {233--244} doi = {10.61435/ijred.2025.60669}, url = {https://ijred.cbiore.id/index.php/ijred/article/view/60669} }
Refworks Citation Data :
To improve the low-carbon economic performance of renewable energy-dominated power systems, a multi-energy coordinated optimization dispatch model for wind, solar, thermal, and storage systems considering uncertainties on both the supply and demand sides is proposed. This paper comprehensively considers the economic costs of thermal power unit operation, wind and solar power curtailment, energy storage operation, carbon trading and spinning reserve. The model incorporates a penalizing carbon trading mechanism and uses a stochastic chance-constrained approach to handle fluctuations in wind and solar power generation as well as uncertainties in load forecasting. The study, based on the IEEE 30-bus system, is solved using a stochastic simulation particle swarm optimization algorithm. Results show that after introducing the carbon trading mechanism, the system's carbon emissions were reduced by 8.35%, wind and solar curtailment penalties were reduced by 65.48%, and overall costs decreased by 14.94%. Additionally, the chance-constrained model effectively reduced the system's reserve capacity requirements, with reserve capacity decreasing by 31.84%, leading to a further reduction of 26.83% in overall costs. In the scenario of combined wind-solar-thermal-storage output, the wind and solar curtailment rate dropped to 7.37%, and carbon emissions decreased to 6474.69 tons. Through the "energy shifting" function, the energy storage system provided effective support during peak loads, further optimizing the dispatch outcomes.
Article Metrics:
Last update:
Last update: 2025-04-23 18:40:46
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
International Journal of Renewable Energy Development (ISSN:2252-4940) published by CBIORE is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.