skip to main content

Synergistic co-pyrolysis of Gracilaria waste and waste tires: Enhancing bio-oil quality through thermal and chemical bond optimization

1Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia Jalan Sultan Yahya Petra 54100 Kuala Lumpur, Malaysia

2Research Center for Energy Conversion and Conservation, National Research and Innovation Agency, PUSPIPTEK, South Tangerang 15314, Indonesia

3Department of Mechanical Engineering, Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia

Received: 14 Mar 2025; Revised: 17 May 2025; Accepted: 24 Jun 2025; Available online: 18 Jul 2025; Published: 1 Sep 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

The increasing demand for renewable energy and sustainable waste management has prompted research into innovative conversion technologies. This study explored the co-pyrolysis of Gracilaria waste (GW) and waste tires (WT) as a potential approach to improving bio-oil quality by enhancing its hydrocarbon content and reducing oxygenated compounds. The novelty of this study lay in providing new mechanistic insights into the co-pyrolysis process by systematically analyzing the thermal degradation behavior and chemical bond evolution of GW-WT mixtures using a combination of TGA, FTIR, and GC-MS techniques. This detailed chemical transformation analysis differentiated the study from prior research that primarily focused on product yields. The study analyzed the thermal degradation behavior and chemical bond transformation of GW and WT mixtures during pyrolysis, hypothesizing that the addition of WT to GW would enhance the hydrocarbon profile and thermal stability of the resulting bio-oil. Thermogravimetric analysis (TGA) was employed to evaluate the decomposition behavior of five different GW-WT blend ratios under an inert atmosphere, while Fourier Transform Infrared Spectrosco py (FTIR) was used to assess chemical functional group evolution in both raw materials and pyrolytic products. The results revealed that GW pyrolysis exhibited a single weight loss peak (100–350°C) with a total weight loss of 40%, while WT pyrolysis followed a two-stage decomposition process (200–500°C) with a total weight loss of 65%. The GW-WT mixture resulted in a total weight loss of approximately 60%, indicating a synergistic effect between the two feedstocks. FTIR analysis confirmed a reduction in hydroxyl (-OH) groups and an increase in hydrocarbon-related bonds (C=C, C-C, and C-H), demonstrating improved bio-oil composition. These findings suggested that incorporating waste tires into Gracilaria pyrolysis enhanced bio-oil quality and hydrocarbon content, offering a promising approach for biomass valorization and sustainable energy production. Future research should explore process optimization through catalyst integration and scale-up potential for industrial applications.

Fulltext View|Download
Keywords: co-pyrolysis; Gracilaria waste; waste tires; thermal degradation; chemical bonds shift
Funding: Universiti Teknologi Malaysia

Article Metrics:

Article Info
Section: Original Research Article
Language : EN
  1. Abnisa, F., & Wan Daud, W. M. A. (2014). A review on co-pyrolysis of biomass: An optional technique to obtain a high-grade pyrolysis oil. Energy Conversion and Management, 87, 71–85. https://doi.org/10.1016/j.enconman.2014.07.007
  2. Alvarez, J., Amutio, M., Lopez, G., Santamaria, L., Bilbao, J., & Olazar, M. (2019). Improving bio-oil properties through the fast co-pyrolysis of lignocellulosic biomass and waste tyres. Waste Management, 85, 385–395. https://doi.org/10.1016/j.wasman.2019.01.003
  3. Alzahrani, N., Nahil, M. A., & Williams, P. T. (2025). Co-pyrolysis of waste plastics and tires: Influence of interaction on product oil and gas composition. Journal of the Energy Institute, 118(October 2024), 101908. https://doi.org/10.1016/j.joei.2024.101908
  4. Amrullah, A., Farobie, O., and Ernawati, L. (2023). Slow-pyrolysis of brown macroalgae Padina sp.: Product characterization and degradation kinetic mechanism. 1–19. http://dx.doi.org/10.21203/rs.3.rs-2548474/v1
  5. Amrullah, A., Farobie, O., Irawansyah, H., Lutfi, M., & Noviani Haty, L. (2024). Synergistic enhancement of bio-oil production, quality, and optimization from co-pyrolysis purun tikus (Eleocharis dulcis) and plastic waste using response surface methodology. Process Safety and Environmental Protection, 187(January), 471–482. https://doi.org/10.1016/j.psep.2024.04.079
  6. Amrullah, A., Farobie, O., Septarini, S., & Satrio, J. A. (2022). Synergetic biofuel production from co-pyrolysis of food and plastic waste: reaction kinetics and product behavior. Heliyon, 8(8). https://doi.org/10.1016/j.heliyon.2022.e10278
  7. Bakirtzis, D., Tsapara, V., Kolovos, K. G., & Liodakis, S. (2014). Assessment of the Impact of Fire Retardants on the Combustion of Natural Polymers Employing DTG and LOI. Fire and Materials, 39(2), 109–118. https://doi.org/10.1002/fam.2232
  8. Chen, W. H., Naveen C, Ghodke, P. K., Sharma, A. K., & Bobde, P. (2023). Co-pyrolysis of lignocellulosic biomass with other carbonaceous materials: A review on advance technologies, synergistic effect, and future prospectus. Fuel, 345(December 2022), 128177. https://doi.org/10.1016/j.fuel.2023.128177
  9. Çulhaoğlu, S., & Kaya, İ. (2015). Synthesis, Characterization, Thermal Stability and Conductivity of New Schiff Base Polymer Containing Sulfur and Oxygen Bridges. Polymer Korea, 39(2), 225–234. https://doi.org/10.7317/pk.2015.39.2.225
  10. Farobie, O., Amrullah, A., Fatriasari, W., Nandiyanto, A. B. D., Ernawati, L., Karnjanakom, S., Lee, S. H., Selvasembian, R., Azelee, N. I. W., & Aziz, M. (2024). Co-pyrolysis of plastic waste and macroalgae Ulva lactuca, a sustainable valorization approach towards the production of bio-oil and biochar. Results in Engineering, 24(October), 103098. https://doi.org/10.1016/j.rineng.2024.103098
  11. Forero‐Doria, O., Gallego, J., Valdés, O., Pinzon-Topal, C., Santos, L. S., & Guzmán, L. (2015). Relationship Between Oxidative Stability and Antioxidant Activity of Oil Extracted From the Peel of Mauritia Flexuosa Fruits. Journal of Thermal Analysis and Calorimetry, 123(3), 2173–2178. https://doi.org/10.1007/s10973-015-4822-7
  12. González, A., Penedo, M., Mauris, E., Fernández-Berridi, M. J., Irusta, L., & Iruin, J. (2010). Pyrolysis analysis of different Cuban natural fibres by TGA and GC/FTIR. Biomass and Bioenergy, 34(11), 1573–1577. https://doi.org/10.1016/j.biombioe.2010.06.004
  13. Huang, X., Xia, W., & Zou, R. (2014). Nanoconfinement of Phase Change Materials Within Carbon Aerogels: Phase Transition Behaviours and Photo-to-Thermal Energy Storage. Journal of Materials Chemistry A, 2(47), 19963–19968. https://doi.org/10.1039/c4ta04605f
  14. Hussain, Z., Khan, A., Naz, M. Y., Jan, M. R., Khan, K. M., Perveen, S., Ullah, S., & Shukrullah, S. (2021). Borax-catalyzed valorization of waste rubber and polyethylene using pyrolysis and copyrolysis reactions. Asia-Pacific Journal of Chemical Engineering, 16(5), 1–12. https://doi.org/10.1002/apj.2696
  15. Idris, S. S., Rahman, N. A., Ismail, K., Alias, A. B., Rashid, Z. A., & Aris, M. J. (2010). Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA). Bioresource Technology, 101(12), 4584–4592. https://doi.org/10.1016/j.biortech.2010.01.059
  16. Islam, N., & Gafur, M. A. (2023). Matrix-Material Fabrication Technique and Thermogravimetric Analysis of Banana Fiber Reinforced Polypropylene Composites. Journal of Building Material Science, 5(2), 15–24. https://doi.org/10.30564/jbms.v5i2.5700
  17. Januszewicz, K., Klein, M., Klugmann-Radziemska, E., & Kardas, D. (2017). Thermogravimetric analysis/pyrolysis of used tyres and waste rubber. Physicochemical Problems of Mineral Processing, 53(2), 802–811. https://doi.org/10.5277/ppmp170211
  18. Kai, X., Li, R., Yang, T., Shen, S., Ji, Q., & Zhang, T. (2017). Study on the co-pyrolysis of rice straw and high density polyethylene blends using TG-FTIR-MS. Energy Conversion and Management, 146, 20–33. https://doi.org/10.1016/j.enconman.2017.05.026
  19. Khalil, Y., Hopkinson, N., Kowalski, A., & Fairclough, J. P. A. (2022). Investigating the Feasibility of Processing Activated Carbon/Uhmwpe Polymer Composite Using Laser Powder Bed Fusion. Polymers, 14(16), 3320. https://doi.org/10.3390/polym14163320
  20. Kim, J. S. (2015). Production, separation and applications of phenolic-rich bio-oil - A review. Bioresource Technology, 178, 90–98. https://doi.org/10.1016/j.biortech.2014.08.121
  21. Kumar, A., Yan, B., Tao, J., Li, J., Kumari, L., Tafa Oba, B., Akintayo Aborisade, M., Ali Jamro, I., & Chen, G. (2022). Co-pyrolysis of de-oiled microalgal biomass residue and waste tires: Deeper insights from thermal kinetics, behaviors, drivers, bio-oils, bio-chars, and in-situ evolved gases analyses. Chemical Engineering Journal, 446(P2), 137160. https://doi.org/10.1016/j.cej.2022.137160
  22. Li, C., Liu, Z., Yu, J., Hu, E., Zeng, Y., & Tian, Y. (2023). Cross-interaction of volatiles in fast co-pyrolysis of waste tyre and corn stover via TG-FTIR and rapid infrared heating techniques. Waste Management, 171(July), 421–432. https://doi.org/10.1016/j.wasman.2023.09.037
  23. Liang, B., Wang, J., Hu, J., Li, C., Li, R., Liu, Y., Zeng, K., & Yang, G. (2019). TG-MS-FTIR study on pyrolysis behavior of phthalonitrile resin. Polymer Degradation and Stability, 169, 108954. https://doi.org/10.1016/j.polymdegradstab.2019.108954
  24. Ma, Y., Qi, H., Zhang, J., Cui, P., Zhu, Z., & Wang, Y. (2023). Thermodynamic analysis of a carbon capture hydrogen production process for end-of-life tires using plasma gasification. Journal of Cleaner Production, 384(October 2022), 135662. https://doi.org/10.1016/j.jclepro.2022.135662
  25. Martínez, J. D., Veses, A., Mastral, A. M., Murillo, R., Navarro, M. V., Puy, N., Artigues, A., Bartrolí, J., & García, T. (2014a). Co-pyrolysis of biomass with waste tyres: Upgrading of liquid bio-fuel. Fuel Processing Technology, 119, 263–271. https://doi.org/10.1016/j.fuproc.2013.11.015
  26. Masfuri, I., Amrullah, A., Farobie, O., Anggoro, T., Rian S, F., Prabowo, W., & Rosyadi, E. (2024). Temperature effects on chemical reactions and product yields in the Co-pyrolysis of wood sawdust and waste tires: An experimental investigation. Results in Engineering, 23(July), 102638. https://doi.org/10.1016/j.rineng.2024.102638
  27. Mavukwana, A. E., Stacey, N., Fox, J. A., & Sempuga, B. C. (2021). Thermodynamic comparison of pyrolysis and gasification of waste tyres. Journal of Environmental Chemical Engineering, 9(2), 105163. https://doi.org/10.1016/j.jece.2021.105163
  28. Mecozzi, M., & Sturchio, E. (2017). Computer assisted examination of infrared and near infrared spectra to assess structural and molecular changes in biological samples exposed to pollutants: A case of study. Journal of Imaging, 3(1). https://doi.org/10.3390/jimaging3010011
  29. Onay, Ö. (2014). The catalytic Co-pyrolysis of waste tires and pistachio seeds. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 36(18), 2070–2077. https://doi.org/10.1080/15567036.2013.791900
  30. Puri, L., Hu, Y., & Naterer, G. F. (2024). Critical Review of the Role of Ash Content and Composition in Biomass Pyrolysis. Front. Fuels, 2. https://doi.org/10.3389/ffuel.2024.1378361
  31. Prasetiawan, H., Selvia Fardhyanti, D., Hadiyanto, H., . Fatriasari, W. (2024). Catalytic Pyrolysis of Biomass Waste Mixture over Activated Carbon and Zeolite Catalyst for the Production Bio Oil. Key Engineering Materials, 978, 107–117. Trans Tech Publications, Ltd. https://doi.org/10.4028/p-9igsfm
  32. Rybiński, P., & Janowska, G. (2014). Effect of the Spatial Network Structure and Cross-Link Density of Diene Rubbers on Their Thermal Stability and Fire Hazard. Journal of Thermal Analysis and Calorimetry, 117(1), 377–386. https://doi.org/10.1007/s10973-014-3673-y
  33. Sanahuja-Parejo, O., Veses, A., Navarro, M. V., López, J. M., Murillo, R., Callén, M. S., & García, T. (2018). Catalytic co-pyrolysis of grape seeds and waste tyres for the production of drop-in biofuels. Energy Conversion and Management, 171(May), 1202–1212. https://doi.org/10.1016/j.enconman.2018.06.053
  34. Tang, Z., Chen, W., Chen, Y., Yang, H., & Chen, H. (2019). Co-pyrolysis of microalgae and plastic: Characteristics and interaction effects. Bioresource Technology, 274, 145–152. https://doi.org/10.1016/j.biortech.2018.11.083
  35. Vuthaluru, H. B. (2004). Thermal behaviour of coal/biomass blends during co-pyrolysis. Fuel Processing Technology, 85(2–3), 141–155. https://doi.org/10.1016/S0378-3820(03)00112-7
  36. Wang, F., Gao, N., Magdziarz, A., & Quan, C. (2022). Bioresource Technology Co-pyrolysis of biomass and waste tires under high-pressure two-stage fixed bed reactor. Bioresource Technology, 344(PB), 126306. https://doi.org/10.1016/j.biortech.2021.126306
  37. Wang, Z., Wu, M., Chen, G., Zhang, M., Sun, T., Burra, K. G., Guo, S., Chen, Y., Yang, S., Li, Z., Lei, T., & Gupta, A. K. (2023a). Co-pyrolysis characteristics of waste tire and maize stalk using TGA, FTIR and Py-GC/MS analysis. Fuel, 337(October 2022). https://doi.org/10.1016/j.fuel.2022.127206
  38. Xu, S., Uzoejinwa, B. B., Wang, S., Hu, Y., Qian, L., Liu, L., Li, B., He, Z., Wang, Q., Abomohra, A. E. F., Li, C., & Zhang, B. (2019). Study on co-pyrolysis synergistic mechanism of seaweed and rice husk by investigation of the characteristics of char/coke. Renewable Energy, 132, 527–542. https://doi.org/10.1016/j.renene.2018.08.025
  39. Yang, P., Han, S., Su, J., Wang, Y., Zhang, X., Han, N., & Li, W. (2017). Design of Self‐healing Microcapsules Containing Bituminous Rejuvenator With Nano‐CaCO3/Organic Composite Shell: Mechanical Properties, Thermal Stability, and Compactability. Polymer Composites, 39(S3). https://doi.org/10.1002/pc.24343
  40. Yuan, H., Fan, H., Shan, R., He, M., Gu, J., & Chen, Y. (2018). Study of synergistic effects during co-pyrolysis of cellulose and high-density polyethylene at various ratios. Energy Conversion and Management, 157(October 2017), 517–526. https://doi.org/10.1016/j.enconman.2017.12.038
  41. Zabihzadeh, S. M. (2010). Influence of Plastic Type and Compatibilizer on Thermal Properties of Wheat Straw Flour/Thermoplastic Composites. Journal of Thermoplastic Composite Materials, 23(6), 817–826. https://doi.org/10.1177/0892705709353711
  42. Zhang, M., Qi, Y., Zhang, W., Wang, M., Li, J., & Lu, Y. (2024). A review on waste tires pyrolysis for energy and material recovery from the optimization perspective. 199(February). https://doi.org/10.1016/j.rser.2024.114531

Last update:

No citation recorded.

Last update: 2025-10-20 19:17:46

No citation recorded.