skip to main content

Morphological and thermal stability analysis of Sn/C electrodes synthesized through impregnation and precipitation methods for CO2 electroreduction

1Department of Chemical Engineering, Bandung Institute of Technology, Ganesha no. 10, Bandung, West Java, 40132, Indonesia

2Center for Oil and Gas Testing, Ministry of Energy and Mineral Resources, Ciledug Raya Kav. 109, South Jakarta, 12230, Indonesia

Received: 9 Nov 2024; Revised: 16 May 2025; Accepted: 22 Jun 2025; Available online: 3 Jul 2025; Published: 1 Sep 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

This study investigates tin (Sn) based electrodes supported by graphite for the electrochemical reduction of carbon dioxide (ECO2R) to formic acid, comparing precipitation and impregnation synthesis methods. Electrodes were characterized using Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), Thermogravimetric Analysis (TGA), Cyclic Voltammetry (CV), Chronoamperometry, and Electrochemical Impedance Spectroscopy (EIS). The precipitation method yielded higher Sn content (91.22%) and superior thermal stability (3% mass loss at 1000°C vs. 45% for impregnation). Morphological analysis through SEM revealed precipitation-synthesized electrodes exhibited more uniform Sn particle distribution across the graphite surface, while impregnation resulted in larger Sn agglomerates with less homogeneous coverage, significantly influencing electroactive surface area and catalytic performance. The electrochemical performance of electrodes was tested using H-cell. CV showed decreased cathodic current for Sn/C electrodes compared to pure graphite in CO2-saturated electrolyte, while chronoamperometry indicated slightly better sustained performance for precipitation-synthesized electrodes with stabilized current densities after 3 hours of operation. EIS analysis suggested the precipitation method yields a marginally lower ohmic resistance (28.8 Ω vs. 29.8 Ω), resulting in a more favorable electrode structure for overall catalytic activity. Both methods showed lower ohmic resistance than that of pure graphite (38.1 Ω), the precipitation-synthesized Sn/C electrode emerged as the preferred selection for ECO2R to formic acid, balancing high Sn content, thermal stability, superior durability, and better Faradaic efficiency. The observed performance differences were attributed to distinct metal-support interactions formed during synthesis, with precipitation creating stronger metal-carbon bonds that enhance stability but potentially limit certain active sites necessary for optimal CO2 reduction kinetics. This comprehensive characterization revealed that the precipitation-synthesized electrode offers the most promising foundation for further development, potentially through process optimization, hybrid synthesis approaches, or targeted doping strategies to enhance catalytic activity while maintaining the advantageous stability characteristics.

Fulltext View|Download
Keywords: Tin electrodes; precipitation; impregnation; carbon support; CO2 electroreduction
Funding: Badan Pengelola Dana Perkebunan Kelapa SawitIPRJ-133/DPKS/2024

Article Metrics:

Article Info
Section: Regional Symposium of Chemical Engineering 2024
Language : EN
  1. Ali, A. M., Zahrani, A. A., Daous, M. A., Podila, S., Alshehri, M. K., Rather, S., & Saeed, U. (2022). Sequential and/or Simultaneous Wet‐Impregnation Impact on the Mesoporous Pt/Sn/Zn/γ ‐Al2O3 Catalysts for the Direct Ethane Dehydrogenation. Journal of Nanomaterials, 2022(1). https://doi.org/10.1155/2022/8739993
  2. Álvarez-Gómez, J. M., & Varela, A. S. (2023). Review on Long-Term Stability of Electrochemical CO2 Reduction. Energy & Fuels, 37(20), 15283–15308. https://doi.org/10.1021/acs.energyfuels.3c01847
  3. Anon. (2019). Voltammetric Methods. https://chem.libretexts.org/@go/page/70712
  4. Bashir, S., Hossain, Sk. S., Rahman, S. ur, Ahmed, S., Amir Al-Ahmed, & Hossain, M. M. (2016). Electrocatalytic reduction of carbon dioxide on SnO2/MWCNT in aqueous electrolyte solution. Journal of CO2 Utilization, 16, 346–353. https://doi.org/10.1016/j.jcou.2016.09.002
  5. Bisquert, J., Garcia-Belmonte, G., Fabregat-Santiago, F., Ferriols, N. S., Bogdanoff, P., & Pereira, E. C. (2000). Doubling Exponent Models for the Analysis of Porous Film Electrodes by Impedance. Relaxation of TiO2 Nanoporous in Aqueous Solution. The Journal of Physical Chemistry B, 104(10), 2287–2298. https://doi.org/10.1021/jp993148h
  6. Botchway, E. A., Ampong, F. K., Nkrumah, I., Puzer, D. B., Nkum, R. K., & Boakye, F. (2023). The CZTS Thin Films Grown by Sulfurization of Electrodeposited Metallic Precursors: The Effect of Increasing Tin Content of the Metallic Precursors on the Structure, Morphology and Optical Properties of the Thin Films. East European Journal of Physics, 2, 249–256. https://doi.org/10.26565/2312-4334-2023-2-28
  7. Connor, P., Schuch, J., Kaiser, B., & Jaegermann, W. (2020). The Determination of Electrochemical Active Surface Area and Specific Capacity Revisited for the System MnOx as an Oxygen Evolution Catalyst. Zeitschrift Für Physikalische Chemie, 234(5), 979–994. https://doi.org/10.1515/zpch-2019-1514
  8. Dang, H., Guan, B., Chen, J., Ma, Z., Chen, Y., Zhang, J., Guo, Z., Chen, L., Hu, J., Yi, C., Yao, S., & Huang, Z. (2024). Research Status, Challenges, and Future Prospects of Carbon Dioxide Reduction Technology. Energy & Fuels, 38(6), 4836–4880. https://doi.org/10.1021/acs.energyfuels.3c04591
  9. Del Castillo, A., Alvarez‐Guerra, M., & Irabien, A. (2014). Continuous electroreduction of CO2 to formate using Sn gas diffusion electrodes. AIChE Journal, 60(10), 3557–3564. https://doi.org/10.1002/aic.14544
  10. del Castillo, A., Alvarez-Guerra, M., Solla-Gullón, J., Sáez, A., Montiel, V., & Irabien, A. (2015). Electrocatalytic reduction of CO2 to formate using particulate Sn electrodes: Effect of metal loading and particle size. Applied Energy, 157, 165–173. https://doi.org/10.1016/j.apenergy.2015.08.012
  11. Del Castillo, A., Alvarez-Guerra, M., Solla-Gullón, J., Sáez, A., Montiel, V., & Irabien, A. (2017). Sn nanoparticles on gas diffusion electrodes: Synthesis, characterization and use for continuous CO2 electroreduction to formate. Journal of CO2 Utilization, 18, 222–228. https://doi.org/10.1016/j.jcou.2017.01.021
  12. Dinh, C.-T., García de Arquer, F. P., Sinton, D., & Sargent, E. H. (2018). High Rate, Selective, and Stable Electroreduction of CO2 to CO in Basic and Neutral Media. ACS Energy Letters, 3(11), 2835–2840. https://doi.org/10.1021/acsenergylett.8b01734
  13. Hernández, M. A., Masó, N., & West, A. R. (2016). On the correct choice of equivalent circuit for fitting bulk impedance data of ionic/electronic conductors. Applied Physics Letters, 108(15). https://doi.org/10.1063/1.4946008
  14. IEA. (2024). CO2 Emissions in 2023. https://www.iea.org/reports/co2-emissions-in-2023
  15. Jorcin, J.-B., Orazem, M. E., Pébère, N., & Tribollet, B. (2006). CPE analysis by local electrochemical impedance spectroscopy. Electrochimica Acta, 51(8–9), 1473–1479. https://doi.org/10.1016/j.electacta.2005.02.128
  16. Kim, H.-Y., Choi, I., Ahn, S. H., Hwang, S. J., Yoo, S. J., Han, J., Kim, J., Park, H., Jang, J. H., & Kim, S.-K. (2014). Analysis on the effect of operating conditions on electrochemical conversion of carbon dioxide to formic acid. International Journal of Hydrogen Energy, 39(29), 16506–16512. https://doi.org/10.1016/j.ijhydene.2014.03.145
  17. Laschuk, N. O., Easton, E. B., & Zenkina, O. V. (2021). Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry. RSC Advances, 11(45), 27925–27936. https://doi.org/10.1039/D1RA03785D
  18. Lazanas, A. Ch., & Prodromidis, M. I. (2023). Electrochemical Impedance Spectroscopy─A Tutorial. ACS Measurement Science Au, 3(3), 162–193. https://doi.org/10.1021/acsmeasuresciau.2c00070
  19. Li, Q., Wang, Z., Zhang, M., Hou, P., & Kang, P. (2017). Nitrogen doped tin oxide nanostructured catalysts for selective electrochemical reduction of carbon dioxide to formate. Journal of Energy Chemistry, 26(5), 825–829. https://doi.org/10.1016/j.jechem.2017.08.010
  20. Li, W., Liu, J., & Yan, C. (2011). Electrochimica Acta Graphite – graphite oxide composite electrode for vanadium redox flow battery. Electrochimica Acta, 56(14), 5290–5294. https://doi.org/10.1016/j.electacta.2011.02.083
  21. Li, W., Seredych, M., Rodríguez‐Castellón, E., & Bandosz, T. J. (2016). Metal‐free Nanoporous Carbon as a Catalyst for Electrochemical Reduction of CO2 to CO and CH 4. ChemSusChem, 9(6), 606–616. https://doi.org/10.1002/cssc.201501575
  22. Li, Y., Han, X., Fu, S., Guo, L., Chen, S., & Wang, J. (2025). Hydrophobic modification of hydroxyl-rich metallic Sn catalysts for acidic CO2 electroreduction at high current densities. Catalysis Science & Technology. https://doi.org/10.1039/D5CY00424A
  23. Li, Y., Yang, Q., Wang, Z., Wang, G., Zhang, B., Zhang, Q., & Yang, D. (2018). Rapid fabrication of SnO2 nanoparticle photocatalyst: computational understanding and photocatalytic degradation of organic dye. Inorganic Chemistry Frontiers, 5(12), 3005–3014. https://doi.org/10.1039/C8QI00688A
  24. Lim, J. W., Dong, W. J., Park, J. Y., Hong, D. M., & Lee, J.-L. (2020). Spontaneously Formed CuSx Catalysts for Selective and Stable Electrochemical Reduction of Industrial CO2 Gas to Formate. ACS Applied Materials & Interfaces, 12(20), 22891–22900. https://doi.org/10.1021/acsami.0c03606
  25. Liu, H., Shi, E., Guo, W., Sun, Z., Fang, Z., Zhu, Z., Jiao, L., Zhai, Y., & Lu, X. (2023). Selectivity control for CO2 electroreduction to syngas using Fe/CuOx catalysts with high current density. Chemical Communications, 59(64), 9746–9749. https://doi.org/10.1039/D3CC03328G
  26. Liu, S., Yang, H., Su, X., Ding, J., Mao, Q., Huang, Y., Zhang, T., & Liu, B. (2019). Rational design of carbon-based metal-free catalysts for electrochemical carbon dioxide reduction: A review. Journal of Energy Chemistry, 36, 95–105. https://doi.org/10.1016/j.jechem.2019.06.013
  27. Maximize Market Research. (2024). Formic Acid Market: Global Application Analysis and Forecast (2025-2032) Trends, Statistics, Dynamics, Segmentation by Grade Type, Price Point, Distribution Channel, and Region. https://www.maximizemarketresearch.com/market-report/formic-acid-market/190968/
  28. McNealy, B. E., & Hertz, J. L. (2014). On the Utility of Constant Phase Elements to Characterize Heterogeneous Ceramic Grain Boundaries. ECS Meeting Abstracts, MA2014-01(16), 756–756. https://doi.org/10.1149/MA2014-01/16/756
  29. Miki, Y., Takeuchi, W., Nakatsuka, O., & Zaima, S. (2019). Influence of Sn precursors on Ge1− x Snx growth using metal-organic chemical vapor deposition. Japanese Journal of Applied Physics, 58(SA), SAAD07. https://doi.org/10.7567/1347-4065/aaec1a
  30. Monteiro, M. C. O., Dattila, F., López, N., & Koper, M. T. M. (2022). The Role of Cation Acidity on the Competition between Hydrogen Evolution and CO2 Reduction on Gold Electrodes. Journal of the American Chemical Society, 144(4), 1589–1602. https://doi.org/10.1021/jacs.1c10171
  31. Nkrumah, I., Ampong, F. K., Britwum, A., Paal, M., Kwakye-Awuah, B., Nkum, R. K., & Boakye, F. (2023). The effect of the concentration of tin (Sn) in the metallic precursor, on the structure, morphology, optical and electrical properties of electrochemically deposited lead-tin-sulphide (PbSnS) thin films. Chalcogenide Letters, 20(6), 399–407. https://doi.org/10.15251/CL.2023.206.399
  32. Padha, B., Verma, S., Mahajan, P., & Arya, S. (2022). Electrochemical Impedance Spectroscopy (EIS) Performance Analysis and Challenges in Fuel Cell Applications. Journal of Electrochemical Science and Technology, 13(2), 167–176. https://doi.org/10.33961/jecst.2021.01263
  33. Pía Canales, C. (2022). Electrochemical Impedance Spectroscopy and Its Applications. In 21st Century Nanostructured Materials - Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture. IntechOpen. https://doi.org/10.5772/intechopen.101636
  34. Qu, G., Wei, K., Pan, K., Qin, J., Lv, J., Li, J., & Ning, P. (2023). Emerging materials for electrochemical CO2 reduction: progress and optimization strategies of carbon-based single-atom catalysts. Nanoscale, 15(8), 3666–3692. https://doi.org/10.1039/D2NR06190B
  35. Ren, M., Zheng, H., Lei, J., Zhang, J., Wang, X., Yakobson, B. I., Yao, Y., & Tour, J. M. (2020). CO2 to Formic Acid Using Cu–Sn on Laser-Induced Graphene. ACS Applied Materials & Interfaces, 12(37), 41223–41229. https://doi.org/10.1021/acsami.0c08964
  36. Safaei, J., Mohamed, N. A., Mohamad Noh, M. F., Soh, M. F., Ludin, N. A., Ibrahim, M. A., Roslam Wan Isahak, W. N., & Mat Teridi, M. A. (2018). Graphitic carbon nitride (g-C3N4) electrodes for energy conversion and storage: a review on photoelectrochemical water splitting, solar cells and supercapacitors. Journal of Materials Chemistry A, 6(45), 22346–22380. https://doi.org/10.1039/C8TA08001A
  37. Sandford, C., Edwards, M. A., Klunder, K. J., Hickey, D. P., Li, M., Barman, K., Sigman, M. S., White, H. S., & Minteer, S. D. (2019). A synthetic chemist’s guide to electroanalytical tools for studying reaction mechanisms. Chemical Science, 10(26), 6404–6422. https://doi.org/10.1039/C9SC01545K
  38. Satola, B., Kirchner, C. N., Komsiyska, L., & Wittstock, G. (2016). Chemical Stability of Graphite-Polypropylene Bipolar Plates for the Vanadium Redox Flow Battery at Resting State. Journal of The Electrochemical Society, 163(10), A2318–A2325. https://doi.org/10.1149/2.0841610jes
  39. Savino, U., Sacco, A., Bejtka, K., Castellino, M., Farkhondehfal, M. A., Chiodoni, A., Pirri, F., & Tresso, E. (2022). Well performing Fe-SnO2 for CO2 reduction to HCOOH. 163. https://doi.org/10.1016/j.catcom.2022.106412
  40. Shaikh, N. S., Shaikh, J. S., Márquez, V., Pathan, S. C., Mali, S. S., Patil, J. V., Hong, C. K., Kanjanaboos, P., Fontaine, O., Tiwari, A., Praserthdam, S., & Praserthdam, P. (2023). New perspectives, rational designs, and engineering of Tin (Sn)-based materials for electrochemical CO2 reduction. Materials Today Sustainability, 22, 100384. https://doi.org/10.1016/j.mtsust.2023.100384
  41. Varhade, S., Guruji, A., Singh, C., Cicero, G., García‐Melchor, M., Helsen, J., & Pant, D. (2025). Electrochemical CO2 Reduction: Commercial Innovations and Prospects. ChemElectroChem, 12(2). https://doi.org/10.1002/celc.202400512
  42. Wang, C., Chen, Y., Jiang, J., Zhang, R., Niu, Y., Zhou, T., Xia, J., Tian, H., Hu, J., & Yang, P. (2017). Improved thermoelectric properties of SnS synthesized by chemical precipitation. RSC Advances, 7(27), 16795–16800. https://doi.org/10.1039/C7RA00373K
  43. Wang, J., Ji, Y., Shao, Q., Yin, R., Guo, J., Li, Y., & Huang, X. (2019). Phase and structure modulating of bimetallic CuSn nanowires boosts electrocatalytic conversion of CO2. Nano Energy, 59, 138–145. https://doi.org/10.1016/j.nanoen.2019.02.037
  44. Wang, Q., Wang, X., Wu, C., Cheng, Y., Sun, Q., Dong, H., & Yu, H. (2017). Electrodeposition of tin on Nafion-bonded carbon black as an active catalyst layer for efficient electroreduction of CO2 to formic acid. Scientific Reports, 7(1), 13711. https://doi.org/10.1038/s41598-017-14233-y
  45. Wen, G., Lee, D. U., Ren, B., Hassan, F. M., Jiang, G., Cano, Z. P., Gostick, J., Croiset, E., Bai, Z., Yang, L., & Chen, Z. (2018). Orbital Interactions in Bi-Sn Bimetallic Electrocatalysts for Highly Selective Electrochemical CO2 Reduction toward Formate Production. Advanced Energy Materials, 8(31), 1802427. https://doi.org/10.1002/aenm.201802427
  46. Widiatmoko, P., Nurdin, I., Devianto, H., Prakarsa, B., & Hudoyo, H. (2020). Electrochemical reduction of CO2 to Formic Acid on Pb-Sn Alloy Cathode. IOP Conference Series: Materials Science and Engineering, 823(1), 012053. https://doi.org/10.1088/1757-899X/823/1/012053
  47. Won, D. H., Choi, C. H., Chung, J., Chung, M. W., Kim, E.-H., & Woo, S. I. (2015). Rational Design of a Hierarchical Tin Dendrite Electrode for Efficient Electrochemical Reduction of CO2. ChemSusChem, 8(18), 3092–3098. https://doi.org/10.1002/cssc.201500694
  48. Wu, Z., Wu, H., Cai, W., Wen, Z., Jia, B., Wang, L., Jin, W., & Ma, T. (2021). Engineering Bismuth–Tin Interface in Bimetallic Aerogel with a 3D Porous Structure for Highly Selective Electrocatalytic CO2 Reduction to HCOOH. Angewandte Chemie International Edition, 60(22), 12554–12559. https://doi.org/10.1002/anie.202102832
  49. Yang, Q., Wu, Q., Liu, Y., Luo, S., Wu, X., Zhao, X., Zou, H., Long, B., Chen, W., Liao, Y., Li, L., Shen, P. K., Duan, L., & Quan, Z. (2020). Novel Bi‐Doped Amorphous SnO x Nanoshells for Efficient Electrochemical CO2 Reduction into Formate at Low Overpotentials. Advanced Materials, 2002822. https://doi.org/10.1002/adma.202002822
  50. Yao, Y., Zhuang, W., Li, R., Dong, K., Luo, Y., He, X., Sun, S., Alfaifi, S., Sun, X., & Hu, W. (Walter). (2023). Sn-based electrocatalysts for electrochemical CO2 reduction. Chemical Communications, 59(59), 9017–9028. https://doi.org/10.1039/D3CC02531D
  51. Yu, H., Wu, L., Ni, B., & Chen, T. (2023). Research Progress on Porous Carbon-Based Non-Precious Metal Electrocatalysts. Materials (Vol. 16 (8).. https://doi.org/10.3390/ma16083283
  52. Zhang, H., Min, S., Wang, F., Zhang, Z., & Kong, C. (2020). Efficient electrocatalytic CO2 reduction to CO with high selectivity using a N-doped carbonized wood membrane. New Journal of Chemistry, 44(16), 6125–6129. https://doi.org/10.1039/D0NJ00538J
  53. Zhang, K., Zhang, H., Ma, H., Ying, W., & Fang, D. (2015). The effect of preparation method on the performance of PtSn/Al2O3 catalysts for acetic acid hydrogenation. Polish Journal of Chemical Technology, 17(1), 11–17. https://doi.org/10.1515/pjct-2015-0003
  54. Zhang, R., Lv, W., Li, G., & Lei, L. (2015). Electrochemical reduction of CO2 on SnO2/nitrogen-doped multiwalled carbon nanotubes composites in KHCO3 aqueous solution. Materials Letters, 141, 63–66. https://doi.org/10.1016/j.matlet.2014.11.040
  55. Zhang, R., Lv, W., Li, G., Mezaal, M. A., & Lei, L. (2015). Electrochemical reduction of carbon dioxide to formate with a Sn cathode and an IrxSnyRuzO2/Ti anode. RSC Advances, 5(84), 68662–68667. https://doi.org/10.1039/C5RA13618K
  56. Zhang, S., Kang, P., & Meyer, T. J. (2014). Nanostructured Tin Catalysts for Selective Electrochemical Reduction of Carbon Dioxide to Formate. Journal of the American Chemical Society, 136(5), 1734–1737. https://doi.org/10.1021/ja4113885
  57. Zhao, C., Wang, J., & Goodenough, J. B. (2016). Comparison of electrocatalytic reduction of CO2 to HCOOH with different tin oxides on carbon nanotubes. Electrochemistry Communications, 65, 9–13. https://doi.org/10.1016/j.elecom.2016.01.019
  58. Zhao, S., Li, S., Guo, T., Zhang, S., Wang, J., Wu, Y., & Chen, Y. (2019). Advances in Sn-Based Catalysts for Electrochemical CO2 Reduction. Nano-Micro Letters, 11(1), 62. https://doi.org/10.1007/s40820-019-0293-x
  59. Zhao, T., Boullosa-Eiras, S., Yu, Y., Chen, D., Holmen, A., & Ronning, M. (2011). Synthesis of Supported Catalysts by Impregnation and Calcination of Low-Temperature Polymerizable Metal-Complexes. Topics in Catalysis, 54(16–18), 1163–1174. https://doi.org/10.1007/s11244-011-9738-2
  60. Zhu, C., Yu, A., Zhang, Y., Chen, W., Wu, Z., Xu, M., Qu, D., Duan, J., & Li, X. (2025). Cu-Sn Electrocatalyst Prepared with Chemical Foaming and Electroreduction for Electrochemical CO2 Reduction. Catalysts, 15(5), 484. https://doi.org/10.3390/catal15050484
  61. Zhu, Q., Ma, J., Kang, X., Sun, X., Liu, H., Hu, J., Liu, Z., & Han, B. (2016). Efficient Reduction of CO2 into Formic Acid on a Lead or Tin Electrode using an Ionic Liquid Catholyte Mixture. Angewandte Chemie International Edition, 55(31), 9012–9016. https://doi.org/10.1002/anie.201601974

Last update:

No citation recorded.

Last update: 2025-10-20 13:02:01

No citation recorded.