skip to main content

Experimental investigation of the cooling effect in an autonomous-orienting conventional solar still

Renewable Energies Laboratory, Energy and Farm Machinery Department – Hassan II Institute of Agronomy and Veterinary Medicine – Madinat Al Irfane, B.P. 6202, Rabat, Morocco

Received: 10 Oct 2024; Revised: 27 May 2025; Accepted: 25 Jun 2025; Available online: 20 Jul 2025; Published: 1 Sep 2025.
Editor(s): Soulayman Soulayman
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

This study aims to assess the cooling effect of the condensing glass cover in a high-temperature conventional solar still (CSS) that dynamically operates, continuously changing its orientation to track the sun from sunrise to sunset. The solar distiller was integrated with a 2-axis solar tracking system assisted by a parabolic trough concentrator (PTC). Throughout the day, the CSS adjusts its orientation while the PTC maintains constant focus on the absorber at the bottom of the still, thereby enhancing the evaporation processes. Simultaneously, the planned cooling processes of the top glass cover are in operation. The impact of two different cooling techniques was investigated. The first one consisted of flowing cooling water over the condensing glass of the PTC-CSS, while the second technique aimed to submerge the entire condensing cover using a modified basin. The analysis revealed positive impact regarding the CSS performance with condensing surface cooling compared to the tubular solar still (TSS). Flowing water had a limited effect on reducing the glass cover's temperature, resulting in only a 2°C decrease. Nonetheless, this yielded 4050 ml/day, marking a 12.16% increase. The second technique widened the water–glass temperature difference, leading to an improvement in productivity up to 6120 ml/day, which is 69.48% higher than that achieved with no cooling. Overall efficiency of the device can be assessed as moderate to low, owing to the high temperature of the condensing cover that continues to be the most significant constraint for the CSS associated with PTC.

Fulltext View|Download
Keywords: Solar still; cooling; desalination; distillation; solar tracker; parabolic trough concentrator

Article Metrics:

  1. Al-Madhhachi, H., & Min, G. (2017). Effective use of thermal energy at both hot and cold side of thermoelectric module for developing efficient thermoelectric water distillation system. Energy Conversion and Management, 133, 14–19. https://doi.org/10.1016/j.enconman.2016.11.055
  2. Alrubaiea, J. F., Latteiff, F. A., Mahdi, J. M., Atiya, M. A., & Majdi, H. S. (2021). Desalination of agricultural wastewater by solar adsorption system: A numerical study. International Journal of Renewable Energy Development, 10(4), 901–910. https://doi.org/10.14710/IJRED.2021.38798
  3. Altarawneh, I., Rawadieh, S., Batiha, M., & Mkhadmeh, L. (2017). Experimental and numerical performance analysis and optimization of single slope , double slope and pyramidal shaped solar stills. Desalination, 423, 124–134. https://doi.org/10.1016/j.desal.2017.09.023
  4. Arunkumar, T., Denkenberger, D., Velraj, R., Sathyamurthy, R., Tanaka, H., & Vinothkumar, K. (2015). Experimental study on a parabolic concentrator assisted solar desalting system. Energy Conversion and Management, 105, 665–674. https://doi.org/10.1016/j.enconman.2015.08.021
  5. Arunkumar,T., Jayaprakash, R., Ahsan, A., Denkenberger, D., & Okundamiya, M. S. (2013). Effect of water and air flow on concentric tubular solar water desalting system. Applied Energy, 103, 109–115. https://doi.org/10.1016/j.apenergy.2012.09.014
  6. Arunkumar, T., Velraj, R., Denkenberger, D. C., Sathyamurthy, R., Kumar, K. V., & Ahsan, A. (2016). Productivity enhancements of compound parabolic concentrator tubular solar stills. Renewable Energy, 88, 391–400. https://doi.org/10.1016/j.renene.2015.11.051
  7. Ayoub, G. M., Malaeb, L., & Saikaly, P. E. (2013). Critical variables in the performance of a productivity-enhanced solar still. Solar Energy, 98(PC), 472–484. https://doi.org/10.1016/j.solener.2013.09.030
  8. Azari, P., Mirabdolah Lavasani, A., Rahbar, N., & Eftekhari Yazdi, M. (2021). Performance enhancement of a solar still using a V-groove solar air collector—experimental study with energy, exergy, enviroeconomic, and exergoeconomic analysis. Environmental Science and Pollution Research, 28(46), 65525–65548. https://doi.org/10.1007/s11356-021-15290-7
  9. Cuce, P. M., Cuce, E., & Tonyali, A. (2021). Performance analysis of a novel solar desalination system – Part 2: The unit with sensible energy storage with thermal insulation and cooling system. Sustainable Energy Technologies and Assessments, 48, 101674. https://doi.org/10.1016/j.seta.2021.101674
  10. Ecole nationale superieure de chimie. (n.d.). Physique à l’ENSCR : erreur et incertitude. Retrieved April 2, 2023, from https://physique.ensc-rennes.fr/erreur_incertitude.php
  11. Elashmawy, M. (2017). An experimental investigation of a parabolic concentrator solar tracking system integrated with a tubular solar still. Desalination, 411, 1–8. https://doi.org/10.1016/j.desal.2017.02.003
  12. Elashmawy, M. (2019). Effect of surface cooling and tube thickness on the performance of a high temperature standalone tubular solar still. Applied Thermal Engineering, 156, 276–286. https://doi.org/10.1016/j.applthermaleng.2019.04.068
  13. EPA. (2012). 5.9 Conductivity _ Monitoring & Assessment _ US EPA. https://archive.epa.gov/water/archive/web/html/vms59.html
  14. Fath, H. E. S., & Ghazy, A. (2002). Solar desalination using humidification-dehumidification technology. Desalination, 142(2), 119–133. https://doi.org/10.1016/S0011-9164(01)00431-3
  15. Fri, R. (1972). the Environmental Protection Agency1. Journal of Milk and Food Technology, 35(12), 715–718. https://doi.org/10.4315/0022-2747-35.12.715
  16. Hafs, H., Ansari, O., & Bah, A. (2023). Impact of wind-driven mixed convection on the performance of passive solar desalination with PCM heat storage in varied Moroccan climates. Acta Ecologica Sinica. https://doi.org/10.1016/j.chnaes.2023.07.001
  17. He, T. xiang, & Yan, L. jun. (2009). Application of alternative energy integration technology in seawater desalination. Desalination, 249(1), 104–108. https://doi.org/10.1016/j.desal.2008.07.026
  18. Hussein, N. F., Ahmed, S. T., & Ekaid, A. L. (2023). Thermal Performance of Double Pass Solar Air Heater With Tubular Solar Absorber. International Journal of Renewable Energy Development, 12(1), 11–21. https://doi.org/10.14710/ijred.2023.46328
  19. Kalidasa Murugavel, K., Chockalingam, K. K. S. K., & Srithar, K. (2008). An experimental study on single basin double slope simulation solar still with thin layer of water in the basin. Desalination, 220(1–3), 687–693. https://doi.org/10.1016/j.desal.2007.01.063
  20. Kumar R, R., Pandey, A. K., Samykano, M., Aljafari, B., Ma, Z., Bhattacharyya, S., Goel, V., Ali, I., Kothari, R., & Tyagi, V. V. (2022). Phase change materials integrated solar desalination system: An innovative approach for sustainable and clean water production and storage. Renewable and Sustainable Energy Reviews, 165, 112611. https://doi.org/10.1016/j.rser.2022.112611
  21. Lawrence, S. A., Gupta, S. P., & Tiwari, G. N. (1990). Effect of heat capacity on the performance of solar still with water flow over the glass cover. Energy Conversion and Management, 30(3), 277–285. https://doi.org/10.1016/0196-8904(90)90010-V
  22. Le, T. H., Pham, M. T., Hadiyanto, H., Pham, V. V., & Hoang, A. T. (2021). Influence of various basin types on performance of passive solar still: A review. International Journal of Renewable Energy Development, 10(4), 789–802. https://doi.org/10.14710/IJRED.2021.38394
  23. Maliani, O. D., Bekkaoui, A., Baali, E. H., Guissi, K., El Fellah, Y., & Errais, R. (2020). Investigation on novel design of solar still coupled with two axis solar tracking system. Applied Thermal Engineering, 172, 115144. https://doi.org/10.1016/j.applthermaleng.2020.115144
  24. Modi, K. V., Nayi, K. H., & Sharma, S. S. (2020). Influence of water mass on the performance of spherical basin solar still integrated with parabolic reflector. Groundwater for Sustainable Development, 10(August 2019), 100299. https://doi.org/10.1016/j.gsd.2019.100299
  25. Morad, M. M., El-Maghawry, H. A. M., & Wasfy, K. I. (2015). Improving the double slope solar still performance by using flat-plate solar collector and cooling glass cover. Desalination, 373, 1–9. https://doi.org/10.1016/j.desal.2015.06.017
  26. Mukherjee, K., & Tiwari, G. N. (1986). Economic analyses of various designs of conventional solar stills. Energy Conversion and Management, 26(2), 155–157. https://doi.org/10.1016/0196-8904(86)90049-X
  27. Pal, P., Yadav, P., Dev, R., & Singh, D. (2017). Performance analysis of modified basin type double slope multi–wick solar still. Desalination, 422(April), 68–82. https://doi.org/10.1016/j.desal.2017.08.009
  28. Petersen, N. H., Arras, M., Wirsum, M., & Ma, L. (2024). Integration of large-scale heat pumps to assist sustainable water desalination and district cooling. Energy, 289, 129733. https://doi.org/10.1016/j.energy.2023.129733
  29. Prado, G. O., Gustavo, L., Vieira, M., Jorge, J., & Damasceno, R. (2016). Solar dish concentrator for desalting water. Solar Energy, 136, 659–667. https://doi.org/10.1016/j.solener.2016.07.039
  30. Rahbar, N., Esfahani, J. A., & Asadi, A. (2016). An experimental investigation on productivity and performance of a new improved design portable asymmetrical solar still utilizing thermoelectric modules. Energy Conversion and Management, 118, 55–62. https://doi.org/10.1016/j.enconman.2016.03.052
  31. Rahmani, A., Boutriaa, A., & Hadef, A. (2015). An experimental approach to improve the basin type solar still using an integrated natural circulation loop. Energy Conversion and Management, 93, 298–308. https://doi.org/10.1016/j.enconman.2015.01.026
  32. Ranjan, K. R., & Kaushik, S. C. (2014). Economic feasibility evaluation of solar distillation systems based on the equivalent cost of environmental degradation and high-grade energy savings. International Journal of Low-Carbon Technologies, 11(1), 8–15. https://doi.org/10.1093/ijlct/ctt048
  33. Shoeibi, S., Mirjalily, S. A. A., Kargarsharifabad, H., Panchal, H., & Dhivagar, R. (2022). Comparative study of double‑slope solar still, hemispherical solar still, and tubular solar still using Al2O3/water film cooling: a numerical study and CO2 mitigation analysis. Environmental Science and Pollution Research, 29(43), 65370. https://doi.org/10.1007/s11356-022-20738-5
  34. Singh, D., Singh, S., Singh, D., Kushwaha, J., Mishra, V., Patel, S. K., Tewari, S., & Giri, B. S. (2024). Sustainable pathways for solar desalination using nanofluids: A critical review. Environmental Research, 241, 117654. https://doi.org/10.1016/j.envres.2023.117654
  35. Srithar, K., Rajaseenivasan, T., Karthik, N., Periyannan, M., & Gowtham, M. (2016). Stand alone triple basin solar desalination system with cover cooling and parabolic dish concentrator. Renewable Energy, 90, 157–165. https://doi.org/10.1016/j.renene.2015.12.063
  36. UN DESA. (2023). The Sustainable Development Goals Report 2023. In The Sustainable development Goals Report 2023: Special Edition (p. 80). https://unstats.un.org/sdgs/report/2023/
  37. Varun Raj, S., & Muthu Manokar, A. (2017). Design and Analysis of Solar Still. Materials Today: Proceedings, 4(8), 9179–9185. https://doi.org/10.1016/j.matpr.2017.07.275
  38. Yılmaz, İ. H., & Mwesigye, A. (2018). Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review. Applied Energy, 225, 135–174 https://doi.org/10.1016/j.apenergy.2018.05.014

Last update:

No citation recorded.

Last update: 2025-10-20 19:15:21

No citation recorded.